
A Formal Analysis of SCTP: Attack Synthesis and Patch Verification

Jacob Ginesin∗

ginesin.j@northeastern.edu
Northeastern University

Max von Hippel∗

vonhippel.m@northeastern.edu
Northeastern University

Evan Defloor†

defloor.e@northeastern.edu
Northeastern University

Cristina Nita-Rotaru†

c.nitarotaru@northeastern.edu
Northeastern University

Michael Tüxen†

tuexen@fh-muenster.de
FH Münster

Abstract
SCTP is a transport protocol offering features such as multi-
homing, multi-streaming, and message-oriented delivery. Its
two main implementations were subjected to conformance
tests using the PACKETDRILL tool. Conformance testing is
not exhaustive and a recent vulnerability (CVE-2021-3772)
showed SCTP is not immune to attacks. Changes addressing
the vulnerability were implemented, but the question remains
whether other flaws might persist in the protocol design.

We study the security of the SCTP design, taking a rigor-
ous approach rooted in formal methods. We create a formal
PROMELA model of SCTP, and define ten properties capturing
the essential protocol functionality based on its RFC specifi-
cation and consultation with the lead RFC author. Then we
show using the SPIN model checker that our model satisfies
these properties. We next define four representative attacker
models – Off-Path, where the attacker is an outsider that can
spoof the port and IP of a peer; Evil-Server, where the attacker
is a malicious peer; Replay, where an attacker can capture
and replay, but not modify, packets; and On-Path, where the
attacker controls the channel between peers. We modify an
attack synthesis tool designed for transport protocols, KORG,
to support our SCTP model and four attacker models.

We synthesize fourteen unique attacks using the attacker
models – including the vulnerability reported in CVE-2021-
3772 in the Off-Path attacker model, four attacks in the Evil-
Server attacker model, an opportunistic ABORT attack in the
Replay attacker model, and eight connection manipulation
attacks in the On-Path attacker model. We show that the pro-
posed patch eliminates the vulnerability and does not intro-
duce new ones according to our model and protocol properties.
Finally, we identify and analyze an ambiguity in the SCTP
RFC. Using the ALLENNLP coreference resolution model,
we show that the ambiguous text could be reasonably inter-
preted in two ways; then we model the incorrect interpretation,
and synthesize a novel attack against it. To avoid novice im-
plementers incorrectly interpreting the RFC, we propose an

∗Contributed equally.
†Listed alphabetically.

erratum, and using the same ALLENNLP model, we show
that it eliminates the ambiguity.

1 Introduction

Transport protocols play a crucial role in transmitting data
across the Internet either directly – as in UDP [3] and
DCCP [21], which provide unreliable communication, and
TCP [19] and SCTP [57], which provide reliable communica-
tion – or by supporting secure protocols – e.g., UDP supports
DTLS [50] and QUIC, while TCP supports TLS [49]. Thus,
it is critical that transport protocols are designed and imple-
mented to be bug-free and secure.

SCTP is a transport layer protocol proposed as an alter-
native to TCP, offering new features, such as multi-homing,
multi-streaming, and message-oriented delivery. Among other
use-cases, it is the data channel for WebRTC [5], which is
used by such applications as Facebook Messenger [33], Mi-
crosoft Teams [36], and Discord [62]. The design of SCTP
is described in RFC documents, the most recent one be-
ing RFC 9260 [57], and implemented in Linux [2] and
FreeBSD [4]. These implementations were tested using PACK-
ETDRILL [1, 14] and analyzed with WIRESHARK [51]. Some
limited efforts also analyzed the SCTP design using formal
methods. The works in [59, 60] focused only on bugs and
did not consider attacks, while the work in [52] focused on
attacks, but modeled only limited aspects of connection es-
tablishment to compare the resilience of SCTP and TCP to
SYN-FLOOD attacks. A recent vulnerability – CVE-2021-
3772 [48] – shows the importance of conducting a much
more comprehensive formal analysis. Although a patch was
proposed in RFC 9260 [57], and adapted by FreeBSD, the
question remains whether other flaws might persist in the
protocol design and whether the patch might have introduced
additional vulnerabilities. To the best of our knowledge, no
prior works formally analyzed the entire SCTP connection
establishment and teardown routines in a security context.

In this work, we take an approach rooted in formal methods
to study the security of SCTP. Our approach is based on attack

1

synthesis, where the goal is, given a program that behaves
correctly, and an attacker model, to find an attack that can
lead the program to behave incorrectly.1 Combined with other
formal methods, such as model checking, this approach allows
us to precisely study the behaviors of protocols such as SCTP
under different threat models.

Model Design and Verification. We start by creating a
finite state machine (FSM) model for the SCTP design as
specified in RFCs 4960 [54] and 9260 [57], and writing ten
properties the models should satisfy based on a close reading
of the RFC documents and discussions with the lead SCTP
author 2. Our properties are defined in Linear Temporal Logic
(LTL) and characterize the standard establishment and tear-
down routines, the proper functioning of the cookie timer, and
the fact that SCTP does not support half-open connections.
Using the SPIN model checker, we automatically verify that
our SCTP model meets these properties (behaves correctly)
when not under attack.

Attack Synthesis. Next we define four attacker models
(Off-Path, Evil-Server, Replay, and On-Path), which are rep-
resentative for transport protocols and provide a wide range
of attacker capabilities allowing us to understand the behavior
of SCTP when under attack. The Off-Path attacker model de-
scribes an attacker who may or may not know the IP address
or port of either peer, but cannot read the messages in-transit,
and does not know the authentication secrets (which in SCTP
are called the “vtags”) of the association. Thus, its injected
messages should theoretically be ignored. In the Evil-Server
attacker model, one peer in an association is malicious, and
aims to guide the other peer into some vulnerable state. The
Replay attacker model describes an attacker capable of captur-
ing messages from the communication channel and replaying
them without modification. In the On-Path attacker model,
the attacker controls the channel connecting the peers, and
can intercept, drop, and inject authenticated messages at-will.

We use an attack synthesis tool for transport protocols
called KORG, based on LTL model-checking [64]. We au-
tomatically synthesize attacks against our SCTP model, for
each LTL property and attacker model. In the Off-Path case,
we automatically find the attack from CVE-2021-3772. We
find numerous attacks in the Evil-Server and On-Path attacker
models, e.g., an Evil-Server attack that establishes a connec-
tion with the victim peer and then leaves it stranded, and
an On-Path attack that injects messages guiding peers into
Shutdown_Received (an illegal passive/passive teardown).
These results highlight the importance of implementation
level defenses against an Evil-Server, and an end-to-end se-
curity model to prevent On-Path attacks. We also find one

1This is totally different from program synthesis, where the problem is,
given some property, to conjure a program that satisfies it.

2We do not seek to construct a complete set of properties, as we’re inter-
ested in studying the security-relevant behaviors of SCTP rather than creating
an all-encompassing specification. Also, defining a complete specification in
LTL is impractical, as LTL is optimized for efficient model checking.

Replay attack, highlighting the security-criticality of the trans-
mission sequence number (TSN).

Patch Verification. We next configure the model to include
the patch introduced in RFC 9260 [57] and show that the patch
fixes the problem, i.e. the property that was violated by the
attack is now met under the attacker model where that attack
was discovered. We further show that in all other attacker
models, the same attacks exist with or without the patch, so
no new vulnerabilities are introduced by the patch. KORG is
sound and complete, meaning that (1) if it finds an attack then
the attack is real (against the model), and (2) if any attacks
against the model and property exist, of the type KORG looks
for, then given sufficient time and memory, KORG will find
one [64]. Since the CVE attack is the kind of attack KORG
looks for using the Off-Path attacker model, the fact that we
find the attack when the patch is disabled, but find no such
attacks when it is enabled, suffices to prove that the attack
does not exist in the patched model.

RFC Disambiguation. Motivated by the fact that CVE-
2021-3772 was caused by a lack of clarity in RFC 4960, we
carefully analyze the RFCs for ambiguities. We identify a por-
tion of RFC 9260 that seems ambiguous to us, and confirm
using the ALLENNLP coreference resolution [23] natural
language processing (NLP) model that the text can in fact be
interpreted in two ways. We confirm which is correct by con-
sulting with the lead SCTP RFC author; then model the incor-
rect interpretation and, using the SPIN [28] model-checker,
show that it is vulnerable to a potentially serious attack where
the attacker can trick a peer in an association into using the
wrong vtag. We propose an RFC erratum and show using the
same NLP approach, that it unambiguously communicates
the correct interpretation. Finally, we use PACKETDRILL [14]
to confirm that the Linux and FreeBSD implementations in-
terpret the ambiguous text correctly. Note, the FreeBSD im-
plementation was co-authored by the lead SCTP RFC author,
so naturally it interprets the RFC correctly.

Contributions. We summarize our contributions:
• Model: We model the original SCTP RFC [54] using

PROMELA. Our model can be configured with or without
the CVE patch from RFC 9260 [57]. It is endorsed by the
lead SCTP RFC author and faithfully captures the SCTP con-
nection and teardown routines, including the exchange of
messages, the user-on-the-loop and its commands, and the
handling out-of-the-blue packets.
• Verification: We formalize ten novel correctness properties
for SCTP in LTL based on a close reading of the RFCs and
use SPIN to prove that our model satisfies all ten when no
attacker is present.
• Attack Synthesis: We introduce four attacker models for

SCTP. Then we modify KORG to support packets and replay
attacks, and use it to synthesize attacks in the context of each
attacker model. For Off-Path, we rediscover the CVE before
the patch was applied, but not after. For Evil-Server, we find
four attacks that, depending on implementation details, could

2

leave a victim peer deadlocked or stranded in some liveness
cycle, unable to automatically de-associate. For Replay, we
find one attack that, depending on the security of the TSN,
could prevent two peers from establishing a connection. We
find six similar On-Path attacks where the attacker leads the
peers into some illegal state or cycle, violating a property.
• Patch Verification: We show that the patch fixes the prob-
lem, i.e. the property that was violated by the attack is now
met under the attacker model wherein the CVE attack was
discovered. Moreover, we show that no new attacks are made
possible by the patch in any of the attacker models against
any of our ten properties.
• RFC Disambiguation: We identify an ambiguity in RFC

9260 which, we show, could be reasonably misinterpreted
in a way that opens the protocol to a new vulnerability. We
confirm that neither implementation makes the mistake, and
to avoid it in future implementations, we suggest an RFC
erratum which we show to be unambiguous.

Ethics. We disclosed all of our results to the chair of the
SCTP RFC committee.

Code. All of our results are reproducible with our open
source code, available at https://github.com/sctpfm.

2 SCTP

In this section we overview SCTP and previous efforts to
validate it, as well as our approach to analyzing its security.

2.1 Overview
SCTP is a transport protocol proposed as an alternative to TCP,
offering enhanced performance, security features, and greater
flexibility. It is specified in several RFCs, each introducing sig-
nificant modifications. RFC 9260 [57], which obsolesced RFC
4960 [54], made numerous small clarifications and improve-
ments, including a critical patch for CVE-2021-3772. On the
other hand, RFC 4960, which obsolesced the original specifi-
cation in RFC 2960 [58], introduced major structural changes
to the protocol as described in the errata RFC 4460 [15].
SCTP is implemented in Linux [2] and FreeBSD [4].

SCTP is a two peer protocol where each peer runs the same
state machine. However, during connection establishment, the
two peers play different roles – while one peer progresses
through the active routine in the state machine, the other peer
must take a corresponding sequence of passive transitions.3

For teardown there are two options: graceful or graceless.
During graceful tear-down, one peer can act actively and the
other passively, or they can both take an active role. Graceless
teardown happens in a single step.

Peer States. An SCTP peer is identified by a set of IP ad-
dresses and a port number. At any given time, each peer exists

3SCTP also supports an initialization routine where both peers are active,
called “initialization collision”. However, this routine is described in the RFC
as an edge-case, rather than an intended use-case.

in one of finitely many states: Closed, in which no associa-
tion exists; Cookie_Wait and Cookie_Echoed, used during
active establishment; Established, in which an association
exists and data can be transferred; Shutdown_Received and
Shutdown_Ack_Sent, used by the passive peer during tear-
down; and Shutdown_Pending and Shutdown_Sent, used by
the active peer during teardown. In active/active teardown,
both peers use Shutdown_Ack_Sent.

Packets. An SCTP packet consists of a common header and
a number of chunks. An essential component of the connec-
tion establishment design is authentication of packets between
the peers using a random integer called the verification tag,
or vtag, which is initialized using an initiate tag, or itag, dur-
ing establishment. The packet header contains the source and
destination port number, vtag, and a checksum. The chunk
types are INIT, INIT_ACK, COOKIE_ECHO, and COOKIE_ACK,
used during establishment; DATA and DATA_ACK, used for
data transmission once an association has been established;
ERROR, used to communicate when an error has occurred;
SHUTDOWN, SHUTDOWN_ACK, and SHUTDOWN_COMPLETE, used
during graceful teardown; ABORT, used during graceless
teardown; and HEARTBEAT and HEARTBEAT_ACK, used for
crash detection. Chunks contain parameters, e.g., INIT and
INIT_ACK chunks (but no others) contain an itag, and (only)
INIT_ACK chunks contain a state cookie, which includes a
message authentication code, a timestamp indicating when
the cookie was created, and a cookie lifespan. There are vari-
ous kinds of ERROR chunks, each indicating a different error
condition, e.g., COOKIE_ERROR which indicates receipt of a
valid but expired state cookie. Much like TCP, SCTP uses
sequence numbers, called Transmission Sequence Numbers
(TSNs). The initial TSN in an association is proposed by an
active participant in the connection establishment routine, and
is incremented with each data transmission thereafter.

Connection Establishment. In active/passive establish-
ment (Figure 1), the active peer sends a packet with an INIT
chunk, containing a nonzero random itag. For the remainder
of the association, this (active) peer will only accept packets
from the passive peer that contain a vtag equal to the itag in
the INIT it sent. The passive peer replies with a packet con-
taining an INIT_ACK chunk, which also contains a nonzero
random itag. For the remainder of the association, the passive
peer will only accept packets which contain this itag value
as the vtag in the common header. By checking the vtag,
each peer protects itself from processing packets sent by an
attacker not knowing the recipient’s vtag.

Connection Teardown. Teardown can occur gracefully,
via the active/passive or active/active routines, or gracelessly,
with an ABORT. During active/passive teardown (Figure 2),
the active peer sends a SHUTDOWN chunk, to which the pas-
sive peer responds with SHUTDOWN_ACK. The active peer then
sends SHUTDOWN_COMPLETE and both transition to Closed.
Active/active teardown is also possible, in which the peers
exchange, in the following order: SHUTDOWN, SHUTDOWN_ACK,

3

https://github.com/sctpfm

and SHUTDOWN_COMPLETE messages. The third option is that
a peer can gracelessly abort a connection by sending an
ABORT chunk. In this case, both peers immediately transi-
tion to Closed. Once the association is closed, the vtags are
forgotten, and when either peer enters a new association, it
will randomly choose a new itag (to become its vtag).

Timers. The SCTP connection routines use three timers:
Init, Cookie, and Shutdown. The goal of the Init Timer is to
stop the active peer in an establishment routine from getting
stuck waiting forever for the passive peer to respond to its
INIT with an INIT_ACK. The goal of the Cookie Timer is sim-
ilar: it stops that same active peer from getting stuck waiting
forever for the passive peer to respond to its COOKIE_ECHO.
The Shutdown Timer plays a similar role but in the teardown
routine, stopping the active peer in teardown from getting
stuck waiting for a SHUTDOWN_ACK.

Out-of-the-Blue Packet Handling. In SCTP a message
is considered out-of-the-blue (OOTB) if the recipient cannot
determine to which association the message belongs, i.e., if it
has an incorrect vtag, or is an INIT with a zero-valued itag.
Specifically, an OOTB message will be discarded if: 1) it was
not sent from a unicast IP, 2) it is an ABORT with an incorrect
vtag, 3) it is an INIT with a zero itag or incorrect vtag4, 4) it
is a COOKIE_ECHO, SHUTDOWN_COMPLETE, or COOKIE_ERROR,
and is either unexpected in the current state or has an incorrect
vtag, or 5) it has a zero itag or incorrect vtag.

Unexpected Packet Handling. A message is unexpected if
it is not OOTB, but nevertheless, the recipient does not expect
it. SCTP handles unexpected packets as described in Algr. 1.

Other Functionality. Other functionalities of SCTP in-
clude a “tie-tag” nonce mechanism used to authenticate a
reconnecting peer after a restart; congestion control5; frag-
mentation and reassembly of DATA chunks; chunk bundling;
support for the Internet Control Message Protocol (ICMP);
and multihoming. We do not consider this functionality in our
analysis, and we refer the reader to [57] for more details.

2.2 Prior Validation

Conformance testing. The Linux and FreeBSD implemen-
tations were tested with PACKETDRILL [1] and fuzz-tests,
suggesting they are crash-free and follow the RFCs. But this
does not necessarily imply the design in the RFCs behaves
correctly in the (a) absense or (b) presense of an attacker.

Formal analysis. For (a), some prior works formally ana-
lyzed SCTP using Colored Petri Net models [39, 59, 60, 65]
in CPNTOOLS. This software can check for livelocks (i.e.
liveness violations) and deadlocks (stuck states), but it cannot
model-check arbitrary logical properties, which seriously lim-
its the use-cases for such models. One prior work studied (b),

4Per RFC 4960, respond with an ABORT having the vtag of the current
association. But per RFC 9260, discard it.

5(based on TCP congestion control)

Algorithm 1 Unexpected Packet Handling

Require: Unexpected msg
if msg.chunk = INIT then

if state = Cookie_Wait or msg does not indicate new
addresses added then

Send INIT_ACK with vtag = msg.itag
else

Discard msg and send ABORT with vtag = msg.itag
end if

else if msg.chunk = COOKIE_ECHO then
if msg.timestamp is expired then

Send COOKIE_ERROR
else if msg has fresh parameters then

Form a new association
else
/* initialization collision */
Set vtag = msg.vtag
goto Established

end if
else if msg.chunk = SHUTDOWN_ACK then

Send SHUTDOWN_COMPLETE with vtag = msg.vtag
else

Discard msg
end if

modeling the four-way handshake used by SCTP and compar-
ing it to the three-way handshake used by TCP in the presence
of an attacker, with the Uppaal model-checker [52]. However,
the model is closed-source and does not include the teardown
routine. It is unclear whether the model includes OOTB or
unexpected packet handling. We summarize the differences
between these prior models and our own in Table 1. Finally,
the IETF published a security memo for SCTP, but it is not
a comprehensive analysis, rather, it simply summarizes prior
conversations about security from the SCTP user-group [55].

CVE-2021-3772 attack and patch. As reported in CVE-
2021-3772 [48], the prior version of SCTP specified in RFCs
2960 [58] and 4960 [54] is vulnerable to a denial-of-service
attack. The reported vulnerability worked as follows. Suppose
SCTP peers A and B have established a connection and an
off-channel attacker knows the IP addresses and ports of the
two peers, but not the vtags of their existing connection. The
attacker spoofs B and sends a packet containing an INIT to
A. The attacker uses a zero vtag as required for packets con-
taining an INIT. The attacker must use an illegal parameter
in the INIT, e.g., a zero itag.

Peer A, having already established a connection, treats the
packet as out-of-the-blue, per RFC 2960 §8.4 and 5.1, which
specify that as an association was established, A should re-
spond to the INIT containing illegal parameters with an ABORT
and go to Closed. But in RFCs 2960 and 4960, it is unspecified
which vtag should be used in the ABORT. Some implementa-
tions used the expected vtag, which is where a vulnerability

4

Work RFC Open-Source Establish Teardown OOTB Unexpected Livelocks Deadlocks Properties
Martins et. al. [39] 2960 N Y Y N N Y Y N
Blanchet et. al. [65] 2960 N Y Y N N Y Y N
Vanit-Anunchai [59] 4960 N Y Y Y Y Y Y N
Vanit-Anunchai [60] 4960 N Y Y Y Y Y Y N
Saini and Fehnker [52] 4960 N Y N N N Y Y Y
Ours 4960 & 9260 Y Y Y Y Y Y Y Y

Table 1: Prior formal SCTP analyses versus ours. RFC column reports modeled version, and open-source column reports whether
the model is open-source. The remaining columns report whether the model includes the establish and teardown routines, OOTB
logic, or unexpected packet handling; and if it can be used to check for livelocks or deadlocks, or to verify arbitrary properties.

PEERA (Active) (Passive) PEERB

Closed Closed

Cookie_Wait

Cookie_Echoed

INIT,itag=i1

INIT_ACK,itag=i2,vtag=i1

COOKIE_ECHO,vtag=i2

COOKIE_ACK,vtag=i1

Established Established

Figure 1: Message sequence chart illustrating SCTP active/-
passive association establishment routine. Arrows indicate
communication direction and time flows from the top down.

PEERA (Active) (Passive) PEERB

Established

Shutdown_Pending Established

Shutdown_Sent Shutdown_Received

Shutdown_Ack_Sent

SHUTDOWN,vtag=i2

SHUTDOWN_ACK,vtag=i1

SHUTDOWN_COMPLETE,vtag=i2

ClosedClosed

Figure 2: SCTP active/passive association teardown.

ATTACKER PEERA PEERB

Established Established
INIT,vtag=0,itag=0

ABORT,vtag=i2

Closed
Closed

Figure 3: Attack disclosed in CVE-2021-3772. Peers A and
B begin having established an association with vtags i1, i2
(resp.). The Attacker transmits an invalid INIT chunk to A,
spoofing the port and IP of B. Peer A responds by sending a
valid ABORT to B, which closes the association. By sending a
single invalid INIT the Attacker performs a DoS.

arises. Since the attacker spoofed the IP and port of Peer B,
Peer A sends the ABORT to Peer B, not the attacker. When Peer
B receives the ABORT, it sees the correct vtag, and tears down
the connection. Thus, by injecting a single packet with zero-
valued tags, the attacker tears down the connection, pulling
off a DoS. The attack is illustrated in Figure 3.

RFC 9260 patches CVE-2021-3772 using a strict defensive
measure, wherein OOTB INIT packets with empty or zero
itags are discarded, without response. FreeBSD [4] uses this
patch. Linux, on the other hand, adopts a different patch [38],
wherein the peer receiving the ABORT with the zero vtag sim-
ply ignores it (rather than close the connection).

3 Our SCTP Model

In this section, we describe our SCTP PROMELA model and
properties that guide our analysis.

3.1 Overview

As we are primarily interested in denial-of-service attacks,
and in order to avoid state-space explosion, we selectively
model the SCTP connection establishment and teardown rou-
tines. This allows us to automatically and exhaustively ex-
plore, simulate, and verify the critical, security-relevant as-
pects of SCTP. Our model captures the following aspects of

5

SCTP per RFC 9260 [57]: internal peer states, packet verifi-
cation using the itag and vtag, timers, TSNs, and handling for
invalid, unexpected, and OOTB packets. We made only the
abstractions listed in Section 3.4.

Although our model is fully faithful to the SCTP RFC [57],
and is an executable program, it is not a network library and
cannot be used in place of the existing Linux or FreeBSD
implementations. This is because of the abstractions and sim-
plifications mentioned above, and also because it does not im-
plement API hooks for higher-level applications, nor syscalls
to transmit over the Internet. It is simply a model of SCTP
with which we can formally verify correctness properties.

3.2 Model Details
We describe our SCTP model in PROMELA, focusing on in-
ternal peer states, packet verification, invalid packet defense
mechanisms, timeouts, and OOTB packet handling.
Mathematical Preliminaries. Linear Temporal Logic is a

modal logic for reasoning about program executions. In LTL,
we say a program P models a property φ, written P |= φ, if φ

holds over every execution of P. If φ holds over some but not
all executions of P, then we write P |̸= φ.

The LTL language is given by predicates (e.g., “Peer A
is in Established” or “Peer B’s cookie timer is inactive”);
the temporal operators “next”, “always”, “eventually”, and
“until”; and the logical operators of negation, conjunction, and
disjunction. An LTL model-checker is a tool that, given P and
φ, can automatically check whether or not P |= φ 6. We use
the model-checker SPIN7, whose language is PROMELA.

We use ∥ to denote rendezvous composition, so, S = P ∥ Q
denotes that the program S equals the composition of P with
Q. Specifically, matching send transitions of P and receive
transitions of Q occur in lockstep, and vice versa. Note, in
our model, we actually build a process called a “channel” to
capture network delay, and we rendezvous-compose the chan-
nel with the two peers to build asynchronous communication
(which is more realistic). The ∥ operator is commutative and
associative. For more details, refer to §2 of [64].
Internal Peer States. Our model consists of two peers (A

and B) and a channel connecting them. That is, we study the
system S = PEERA ∥ CHANNEL ∥ PEERB. Each peer is rep-
resented by an identical FSM, illustrated in Fig. 5. Transitions
between states occur based on the receipt of user commands,
or communication and message processing.

The channel connecting the two peers contains an internal
single-message buffer in each direction (meaning it can hold
two messages at once, one traveling from left to right and
the other from right to left). It does not drop, corrupt, nor
create messages, and cannot accept a new message in a given
direction until the old one was delivered. In other words, it

6LTL model-checking is decidable, and reduces to checking Büchi Au-
tomata intersection emptiness, which is PSPACE-complete.

7version 6.5.2

CHANNEL

ATOB

BTOA
PEERA PEERBUSERA USERB

Figure 4: The system USERA ∥ PEERA ∥ CHANNEL ∥
PEERB ∥ USERB. CHANNEL contains a size-1 FIFO buffer in
each direction (AtoB and BtoA, respectively). Arrows indicate
communication direction. Composition between CHANNEL
and peers is rendezvous (the buffers are inside CHANNEL).

is lossless and FIFO, in that it guarantees every delivered
message was sent and messages are delivered in order. The
entire setup is illustrated in Figure 4.

Packet Verification and Invalid Packet Defenses. We model
each SCTP message as consisting of a message chunk, a vtag,
and an itag. Each of these components are modeled using
enums, which in PROMELA are called mtypes. The message
chunk denotes the meaning of the message, e.g., a message
with an INIT chunk is called an initiate message and is used
to initiate a connection establishment routine. The itag and
vtag are used to verify the authenticity of the sender of the
message, as described in Section 2.2. In our model there are
three kinds of tags: expected (E), unexpected (U), or none
(N). A tag is expected if (1) it is a non-zero itag on an INIT
or INIT_ACK chunk, or (2) it is the other peer’s vtag in the
existing association. Otherwise, it is unexpected. The none
type is reserved for packets that do not carry the given tag type
– e.g., only INIT and INIT_ACK chunks carry an itag, so in the
other types of messages, the itag is N. The BNF grammar for
messages in our model is given in Figure 6. We also support
an option where the msg can be extended with a TSN.

Upon receiving a message, our model checks that the tags
are set as expected, depending on the message and state. If a
message has an unexpected tag then the model employs the
defenses specified in the RFC, e.g., silently discarding the
message or responding with an ABORT. These defenses can be
configured with or without the CVE patch from RFC 9260.

Active and Passive Connection Routines. Our SCTP model
implements active/passive establishment and teardown, as
well as active/active teardown, but not active/active estab-
lishment (a.k.a. “INIT collision”), precisely as described in
Section 2 and illustrated in Figures 1 and 2, with the caveat
that the itag and vtag are abstracted (as described above). We
also capture the TSN proposal and use throughout an associa-
tion, although this feature can be turned off in our model to
reduce the state-space for more efficient verification.

Out-of-the-Blue and Unexpected Packets. Our model faith-
fully captures OOTB logic described in §8.4 of RFCs 4960
and 9260, with only the exceptions given in Section 3.4.

6

Closed

Cookie_Wait

Cookie_Echoed

Established

Shutdown_Received Shutdown_Pending

Shutdown_SentShutdown_Ack_Sent

INIT,N,E? INIT_ACK,E,E!

User_Assoc? INIT,N,E!

COOKIE_ECHO,E,N?

COOKIE_ACK,E,N!
INIT_ACK,E,E?

COOKIE_ECHO,E,N!

COOKIE_ACK,E,N?COOKIE_ERROR,E,N?
then optionally, INIT,N,E!

COOKIE_ERROR,E,N?

INIT,N,E!

User_Shutdown?

SHUTDOWN,E,N?

SHUTDOWN,E,N!

SHUTDOWN_ACK,E,N?

SHUTDOWN_COMPLETE,E,N!

SHUTDOWN,E,N?
SHUTDOWN_ACK,E,N!

SHUTDOWN_ACK,E,N!

SHUTDOWN_
COMPLETE,E,N?
or
(SHUTDOWN_ACK,E,N?

SHUTDOWN_COMPLETE,E,N!)

Figure 5: SCTP Finite State Machine. x,v, i? (or x,v, i!) denotes receive (or send) chunk x with vtag v and itag i. Events in
multi-event transitions occur in the order they are listed. Logic for OOTB packets, ABORT messages or User_Abort commands,
unexpected user commands, and data exchange are ommitted but faithfully implemented in the model and described in this paper.

msg ::= INIT,N,ex | INIT_ACK,ex,ex | ach,ex,N

ach ::= ABORT | SHUTDOWN | SHUTDOWN_COMPLETE
| COOKIE_ECHO | COOKIE_ACK | SHUTDOWN_ACK
| COOKIE_ERROR | DATA | DATA_ACK

ex ::= E | U

Figure 6: BNF grammar for messages in our model.

3.3 Ambiguity in the RFC

We found one ambiguity in the SCTP RFCs, in §5.2.1, during
the description of how a peer should react upon receiving an
unexpected INIT chunk:

Upon receipt of an INIT chunk in the Cookie_Echoed state,
an endpoint MUST respond with an INIT_ACK chunk us-
ing the same parameters it sent in its original INIT chunk
(including its Initiate Tag, unchanged), provided that no
new address has been added to the forming association.

Consider two peers - A and B - initially both in Closed, in
addition to some attacker who can spoof the port and IP of
B. Suppose these machines engage in the sequence of events
illustrated in Figure 7. At the end of the sequence, what value
should the vtag V take?

To understand all possible interpretations, we ran the text
through the ALLENNLP Coreference Resolution tool [23], a
state-of-the-art NLP model trained to detect which words in
a sentence refer to the same entity, producing the following
output, where entities are given ids and colored for readability;

PEERA (Active) (Passive) PEERB ATTACKER

Closed Closed

Cookie_Wait

Cookie_Echoed

INIT,itag=i1

INIT_ACK,vtag=i1,itag=i2

INIT,itag=i3

INIT_ACK,vtag=V ,itag=i1

Figure 7: Ambiguous scenario. What value should V take?
See Section 3.3.

and each reference R to an entity with id I is highlighted I R.

Upon receipt of an 1 INIT chunk in the Cookie_Echoed
state, 0 an endpoint MUST respond with an INIT_ACK
chunk using the same parameters 0 it sent in 0 its origi-
nal 1 INIT chunk (including 0 its Initiate Tag, unchanged),
provided that no new address has been added to the forming
association.

The model predicts that the occurrences of it and its all
refer to the same entity as an endpoint, which is clearly the
responding endpoint, i.e., Peer A. What if a reader interprets
“the same parameters” to include the vtag? Then the model
would predict that the vtag of the INIT_ACK should come
from the INIT that entity 0 sent, implying V should take the
itag of the message, i.e. V = i1. The fact that this is wrong only
becomes clear if you fully understand how itags and vtags are
used in both directions. To make the text unambiguous, we
suggest adding the following sentence:

7

The verification tag used in the packet containing the
INIT_ACK chunk MUST be the initiate tag of the newly
received INIT chunk.

The coreference resolution model predicts that “the newly
received INIT chunk” is the same entity as the INIT chunk in
“Upon receipt of an INIT chunk in the Cookie_Echoed state”,
so the text is unambiguous.

3.4 Abstractions and Limitations
Our model is fully faithful to the SCTP RFC, modulo the
following abstractions and limitations.
• Unicast peers. In the RFC, OOTB messages from non-
unicast peers are discarded; we model all peers as unicast.
• No crashes or restarts. In our model, peers never crash
or restart. Thus we also ommit crash detection (including
HEARTBEAT and HEARTBEAT_ACK chunks).
• Tags are abstracted. We do not model tie-tags, which are
used when reconnecting a peer to an existing association after
a restart. In the RFC, itags and vtags are integer-valued and
chosen randomly. But we model tags as the “expected” value,
an “unexpected” value, or “none”, since this level of detail
is all that matters for our properties. A side-effect is that we
cannot study INIT collision. INIT collision is not included
in the State Association Diagram in RFC 9260 §4, nor in
the various association flows throughout the RFC document,
leading us to believe it is not a protocol feature but rather an
edge-case the protocol is designed to withstand.
• Perfect channel. We do not model packet loss, reordering,
nor corruption, nor how SCTP deals with these scenarios.
• Peers do not exchange data while in Established. Be-
cause we focus on denial-of-service attacks, modeling data
exchange while in Established is unnecessary; rather, we fo-
cused on the connection and disconnection of peers. We did
model data transmission outside of Established, in case it
caused edge-case behaviors during teardown.
• Packets only ever contain one chunk. Since we also do
not model (or write properties about) fragmentation, bundling,
or reassembly, we can simulate multi-chunk transmissions by
sending consecutive single-chunk messages.
• Simplified packet structure. We choose not to model
packet structure details relevant to only DATA packets, e.g.:
stream sequence number, payload protocol identifier, and vari-
able length. We also do not model ICMP messages.

3.5 Correctness Properties
Next we transcribe ten logical properties we believe SCTP
should satisfy. Note, we do not intend to create a complete set
of properties that captures all behaviors of SCTP. Rather, we
design our properties to capture the security-relevant behavior
of SCTP. Each property is implemented in PROMELA using
LTL. We justify each using the RFCs [54,57] and our intuition
about the security SCTP should provide.

φ1: A peer in Closed either stays still or transitions to
Established or Cookie_Wait. This is based on the routine
described in §5.1, as well as the Association State Diagram
in §4. If a closed peer could transition to any state other than
Established or Cookie_Wait, it could de-synchronize with the
other peer, breaking the four-way handshake and potentially
leading to a deadlock, livelock, or other problem.
φ2: One of the following always eventually happens: the

peers are both in Closed, the peers are both in Established,
or one of the peers changes state. The property we want to
capture here, “no half-open connections”, is stated in §1.5.1,
was verified in the related work by Saini and Fehnker [52],
and was studied for TCP in two prior works [46, 64]. But
we have to formalize it subtly, because in the case of an in-
transit ABORT, it is possible for one peer to temporarily be in
Established while the other is in Closed; so we write it as a
liveness property, saying half-open states eventually end.
φ3: If a peer transitions out of Shutdown_Ack_Sent then

it must transition into Closed. We derived this from the
Association State Diagram in §4. Every transition out of
Shutdown_Ack_Sent described in the RFC ends up in ei-
ther Closed or Shutdown_Ack_Sent. If this property fails,
it would imply a flaw in the graceful teardown routine, and
could cause a deadlock, livelock, or other problem.
φ4: If a peer is in Cookie_Echoed then its cookie timer

is actively ticking. Per §5.1 C), the peer starts the cookie
timer upon entering Cookie_Echoed. Per §4 step 3), when
the timer expires it is reset, up to a fixed number of times, at
which point the peer returns to Closed. If the property fails,
then the active peer in an establishment could get stuck in
Cookie_Echoed forever, opening a new opportunity for DoS.
φ5: The peers are never both in Shutdown_Received. This

property follows from inspection of the Association State
Diagram in §4. From a security perspective, if both peers
were in Shutdown_Received, this would indicate that neither
initiated the shutdown (yet both are shutting down); the only
logical explanation for which is some kind of DoS.
φ6: If a peer transitions out of Shutdown_Received then it

must transition into either Shutdown_Ack_Sent or Closed.
The transition to Shutdown_Ack_Sent is shown in the As-
sociation State Diagram in §4. The transition to Closed can
occur upon receiving either a User_Abort from the user or an
ABORT from the other peer. No other transitions out of Shut-
down_Received are given in the RFC. If this property fails,
it could de-synchronize the teardown handshake, potentially
leading to an unsafe behavior. For example, if a peer transi-
tioned from Shutdown_Received to Established, it would end
up in a half-open connection.
φ7: If Peer A is in Cookie_Echoed then B must not be in

Shutdown_Received. We derived this from the Association
Diagram in §4, which shows A must receive an INIT_ACK
while in the Cookie_Wait and then send a COOKIE_ECHO in
order to transition into Cookie_Echoed. B must have been
in Closed to send an INIT_ACK in the first place, hence B

8

cannot be in Shutdown_Received. This property relates to
the synchronization between the peers: if one is establishing
a connection while the other is tearing down, then they are
de-synchronized, and the protocol has failed.
φ8: Suppose that in the last time-step, Peer A was in

Closed and Peer B was in Established. Suppose neither
user issued a User_Abort, and neither peer had a timer
time out. Then if Peer A changed state, it must have
changed to either Established, or the implicit, intermedi-
ary state in Cookie_Wait in which it received INIT_ACK
but did not yet transmit COOKIE_ECHO. The transitions
from Closed to Established and the described intermediary
state are implicit in the Association State Diagram in §4. The
timer caveat is described in §4 step 2, and the aborting caveat
is in §9.1. If the property fails, the four-way handshake ended,
yet was not completed successfully, did not time out, and was
not aborted, so somehow, the protocol failed.
φ9: The same as φ8 but the roles are reversed. The property

is: Suppose that in the last time-step, Peer B was in Closed
and Peer A was in Established...
φ10: Once connection termination initiates, both peers

eventually reach Closed. This follows from the description
of connection termination in §9. Once connection termination
is initiated, there is no way to recover the association.

For the On-Path attacker model, φ8 and φ9 are symmetric. For
the other attacker models, the properties are distinct, because
the attacker model’s network topology is asymmetric.

3.6 Validating Our Model
Our model allows us to execute and reason about any com-
ponent of the peer logic in isolation, or two interacting peers.
To verify our model, we extracted the properties listed above
from the SCTP RFCs, and then used the model-checker to
prove that our model satisfies all of the properties. We in-
teractively guided SPIN to drive the model through various
connection flows (which we compared to the RFC text), and
we manually compared our logic for handling OOTB packets
to the corresponding C code in Linux and FreeBSD. Finally,
we used SPIN to prove there were no deadlocks or livelocks
(liveness cycles) and all the peer states are reachable.

4 SCTP Attack Synthesis

In this section we provide details on attack synthesis and
KORG, the tool we used. Next, we describe four attacker
models we defined and used for our analysis. Finally, we
present the changes we had to make to KORG to handle our
SCTP model, and the four attacker models we considered.

4.1 Attack Synthesis
LTL program synthesis is the problem of, given an LTL speci-
fication φ, automatically deriving a compliant program P (for

which P |= φ). LTL attack synthesis is fundamentally different
(logically dual), and cannot be solved using program synthe-
sis alone. In attack synthesis, the problem is flipped: given
a program S and property φ, where S is already compliant
(S |= φ), if S = P ∥ Q consists of an invariant component P
(that the attacker cannot change) and a variant component Q
(that the attacker can change), we ask whether there exists
some modification A such that, if we replace Q with A, the
new system S′ = P ∥ A is non-compliant (S′ |̸= φ). In other
words, we study a system that behaves correctly, and ask if
we can change some constrained aspect so that it behaves
incorrectly. If so, we call this modification A an “attack”.

There are multiple kinds of attacks one might try to synthe-
size, depending on the nature of the protocol and the attacker
goal. We use use KORG [64], which leverages SPIN [28] to
synthesize attacks against arbitrary LTL properties of trans-
port protocols. KORG was previously successfully applied to
TCP and DCCP [46,64], and to the best of our knowledge, it is
the only open-source attack synthesis tool that can synthesize
terminating fixed-vocabulary communication attacks against
arbitrary LTL properties.8 KORG is proven to be sound (it has
no false-positives) and complete (if attacks of the kind KORG
looks for exist, given enough resources, KORG will find one).
Meanwhile, SPIN has existed for 35 years; has been applied
to dozens of real systems including the Mars rover [29], Path-
Star access server [30], and ISO/IEEE P11073-20601 medical
communication protocol [24]; spawned a dedicated formal
methods conference, currently in its 30th year9; and earned
the the 2002 ACM Software System Award.

On the other hand, PROVERIF [13] and TAMARIN [42]
are designed to verify, or synthesize attacks against, secrecy,
authentication, privacy, and equivalence properties of crypto-
graphic protocols using the Dolev-Yao attacker model [18].
Although TAMARIN admits a small language of guarded
first-order trace properties, in practice it does not scale to
complicated properties (e.g., φ8) of complex models (e.g.,
ours) [10], the language is not as well-suited as LTL for veri-
fying state-based properties of transport protocols, and it does
not support arbitrary attacker models (such as ours, which dif-
fer from Dolev-Yao – e.g., because in Dolev-Yao the attacker
can spawn infinitely many associations at once, but in our at-
tacker models, it is limited to one at a time). Thus, PROVERIF
and TAMARIN [42] are better than KORG for studying cryp-
tographic protocols such as TLS [11] or Signal [34] under
Dolev-Yao, but KORG is better for synthesizing communi-
cation attacks against non-cryptographic transport protocols
such as SCTP under custom attacker models.

KORG requires four inputs: an invariant component P (e.g.,
the SCTP model) and variant component Q (which in our
case is part of the attacker model), both in PROMELA; an LTL

8We discuss another approach [40] based on reactive controller synthesis
in Sec. 6, but it is not directly comparable as it synthesizes a narrow category
of attacks that are guaranteed to succeed, which do not always exist.

9https://spin-web.github.io/SPIN2023/

9

https://spin-web.github.io/SPIN2023/

CHANNEL

ATOB

BTOA
PEERA PEERB

ATTACKER

invalid msgs

USERA USERB

Figure 8: Off-Path Attacker Model: S = ATTACKER ∥
USERA ∥ PEERA ∥ CHANNEL ∥ PEERB ∥ USERB. The at-
tacker can transmit messages into the BtoA buffer, but cannot
receive messages, nor block messages in-transit. The attacker
can send only chunks having an invalid itag and vtag (as it is
not privy to the association).

correctness property φ, such that the composite system con-
sisting of both P and Q satisfies φ (P ∥ Q |= φ); and a YAML
file encoding the grammar (I/O) of Q (which become the I/O
of the attacker). KORG generates an model with these inputs
in which Q is replaced with a process called a daisy, that can
nondeterministically send or receive messages specified in the
grammar. Next, it modifies φ to have a precondition saying
the daisy terminates, and then asks SPIN to verify or disprove
the modified property for the modified model. Either KORG
reports no attacks exist, or SPIN outputs a counterexample
execution, which KORG parses into an attack A. For more re-
fer to [64]. The inputs to KORG needed to reproduce each of
our experiments are documented in the Appendix in Table 4.

KORG is limited by the level of detail in the model, the defi-
nition of “attack” used by KORG [64], and the attacker models
and properties considered. Thus there could exist other attacks
beyond those KORG synthesizes, which violate other proper-
ties or work in other attacker models; or attacks other than
the type that KORG can find (e.g., statistical ones); or attacks
that cannot be found without a more detailed model. These
limitations are inherent to all attack synthesis techniques.

4.2 Attacker Models
We use the term attacker model to mean a formal description
of the placement and capabilities of the attacker and protocol
peer(s) on the network. We create four attacker models: Off-
Path, Evil-Server, Replay, and On-Path. They are general-
purpose and applicable to any transport protocol, and we
contribute them to KORG.

Off-Path. In this model, an attacker who does not know
either vtag communicates with one peer in order to disrupt the
association formed by the two peers that want to communicate.
The vtag mechanism in SCTP was designed to defend against
such an attacker. See Figure 8.

Evil-Server. In this model, one of the peers behaves mali-
ciously. For example, the attacker takes the form of a finite
sequence of malicious instructions inserted before the code
of Peer B, after which B behaves like normal. See Figure 9.

Replay. In this model, the attacker can replay captured

CHANNEL

ATOB

BTOA
PEERA ATTACKER

USERA USERB

Figure 9: Evil-Server Attacker Model: S = USERA ∥
PEERA ∥ CHANNEL ∥ ATTACKER ∥ USERB. Peer B is pre-
fixed with an attacker, whose code consists of a finite, termi-
nating sequence of communication operations.

CHANNEL

ATOB

BTOA
PEERA PEERB

ATTACKER

unmodified msgs

USERA USERB

Figure 10: Replay Attacker Model: S = ATTACKER ∥
USERA ∥ PEERA ∥ CHANNEL ∥ PEERB ∥ USERB. The at-
tacker can capture and re-transmit messages in BtoA, but
cannot edit captured messages, nor block those in transit.

packets without modification. See Figure 10.
On-Path. . In this attacker model, the attacker controls the

channel connecting the two peers, and can drop or insert valid
messages at-will. SCTP was not designed to provide security
against such an attacker and we study this attacker model only
to understand what the “worst case scenario” for SCTP looks
like. See Figure 11.

4.3 Changes to KORG

We improved KORG to support our SCTP analysis in four
ways. (1) Since KORG was originally hard-coded for enum-
style packets, we extended KORG to support arbitrary finite
packet types. This was needed to support our SCTP model
(Figure 6). (2) We modified KORG to report any attacks it finds
even if it fails to exhaust the search-space. Previously, it would
report an error and discard any results if the space was not
exhausted. (3) To save time, we disabled the preliminary step

ATTACKER
ATOB

BTOA
PEERA PEERB

USERA USERB
valid msgs only

Figure 11: On-Path Attacker Model: S = USERA ∥ PEERA ∥
ATTACKER ∥ PEERB ∥ USERB. The attacker is allowed to
perform a finite sequence of send/receive actions, in which it
only sends valid messages (but can receive anything). Once
this sequence terminates, it behaves like an honest channel.

10

where KORG verifies that the property holds in the absence of
an attacker, instead manually performing this step in SPIN.
(4) We extended KORG to support support replay attackers.

A replay attacker is one capable of capturing and replay-
ing messages. Although the replay attacker model reasons
about packets received, the attacks this model produces form a
subset of those produced by the On-Path attacker; thus, sound-
ness and completeness follow from the proofs in the KORG
paper. Our replay attacker synthesis implementation supports
packet capture and replay over the same or different channels.
In the latter case, the attacker can capture a message from
one channel and replay it into another. It also supports packet
storage in a memory buffer with configurable size, though,
the verification complexity increases exponentially with the
memory bound. Finally, to support the state change that hap-
pens when a new vtag is chosen, we added a feature where a
special message can be configured to flush the storage.

We also contribute our SCTP model and four attacker mod-
els in a format amenable to KORG. We document the attacker
models in Section 4.2. Excluding the models, our modifi-
cations required changing 80 lines of preexisting code and
adding 213 lines of new functionality in KORG, in addition
to 102 lines of shell-script to automate our experiments. All
modifications are available with the paper artifacts.

5 Experimental Results

We next present our experimental results. Our SCTP model
satisfies all ten properties in the absence of an attacker. To
examine whether these properties still hold when an attacker
is present, we synthesize attacks using the three attacker mod-
els. Then, we enable the CVE patch described in RFC 9260
and repeat our analysis, in order to check whether the patch
resolves the vulnerability, and/or introduces any new attack
vectors. Finally, we show how a new attack is enabled if the
ambiguous text identified in Section 3.3 is misinterpreted.
Analysis runtimes are related in Section 8.4 in the appendix.

5.1 Experimental Methodology
Each time we run KORG, we ask it to synthesize ≤ 10 attacks.
In our experience, after the first ten, subsequent attacks tend
to be repetitive, differing only by actions that do not impact
the attack outcome. We configure KORG with a default search
depth of 600,000, and a maximum depth of 2,400,000. In
our experience, these parameters balance fast-performance on
smaller properties with the ability to also attack more complex
ones, without needing to run on a cluster. We make certain
assumptions or optimizations in the different attacker models.
• Off-Path: We assume the Off-Path attacker knows the port
and IP of a peer, since otherwise, all its (spoofed) messages
will be immediately discarded.10 To reduce the search-space,

10The ports and IP of a peer might not change between associations [56].

BTOA !COOKIE_ACK,U,N; (repeat twice more)
BTOA !COOKIE_ECHO,U,N;
BTOA !COOKIE_ACK,U,N; (repeat 6 more times)
BTOA !COOKIE_ECHO,U,N;
BTOA !INIT,N,U; /* attack */

Figure 12: Automatically synthesized CVE attack in the Off-
Path attacker model. BTOA is the channel from the attacker
to the peer being attacked. Only the final line matters.

we assume the attacker does not send DATA or COOKIE_ERROR
chunks, which cannot change the receiving peer’s state. We
further reduce the space by first synthesizing attacks against
the establishment routine, where the attacker could only send
messages that are used during establishment; and then doing
the same for teardown. Our search is complete despite this
split because the FSM is inherently Markovian and our prop-
erties do not look back more than one state in the past. In our
open-source artifacts, we provide code illustrating how this
optimization can be repeated for any transport protocol.
• Evil-Server: We assume the Evil-Server attacker only sends
valid messages, since it knows the current vtags. To reduce
the search-space, we assume it does not send DATA.
• Replay: We configure the replay attacker to have a memory
size of two — we more memory causes state-space explosion
and makes exhaustive verification infeasible. We also con-
figure it to discard all messages in memory upon receiving
an INIT chunk, as this allows us to correctly model the vtag
change between multiple connection and teardown cycles.
• On-Path: We perform the same optimizations as in the

Off-Path attacker model. And like in the Evil-Server attacker
model, we assume the attacker only sends valid messages.

Our experiments are easily reproducible using the paper
artifacts. We summarize the inputs given to KORG for each
experiment in Table 4 in the Appendix.

5.2 Attacks
We generate at least one attack in each attacker model, all of
which we summarize in Table 2. We discuss results for each
attacker model in detail below.

Off-Path. KORG found a variant of the attack reported
in CVE-2021-3772, given in Figure 12. The variant differs
only from the CVE in that it begins by transmitting some
OOTB messages that are discarded and have no impact on
the outcome. It ends with the transmission of an INIT with
an unexpected (zero) itag, which is the CVE attack.

Evil-Server. KORG synthesizes four attacks. The first at-
tack models a scenario in which the Shutdown Timer is con-
figured to a very large value, and thus the attacker can cause
a peer in active teardown to (essentially) deadlock by never

11

Attacker Model Property Synthesized Attacks
Off-Path φ9 A single variant of the CVE attack.

Evil-Server

φ1 One attack where the attacker guides A through passive establishment. Then when A attempts
active teardown, if its Shutdown Timer never fires, it deadlocks.

φ6 One attack where the attacker guides A to Shutdown_Received, then sends it an unexpected
COOKIE_ECHO, causing it to go back to Established.

φ8 One attack where the attacker guides A through most of active establishment before aborting the
connection. When the attack terminates, B receives the en-route COOKIE_ECHO and completes
passive establishment, creating a half-open connection.

φ9 One attack where the attacker guides A through passive establishment then terminates. If B
then attempts active establishment, the property fails, since the peers are de-synchronized.

Replay φ2 One attack where the attacker sends an ABORT before the peers establish a TSN for the
association.

On-Path
φ5 Four attacks where the attacker manipulates both peers into Shutdown_Received.
φ8 Two attacks where the attacker spoofs A to guide B through passive establishment.
φ9 Two attacks where the attacker spoofs B to guide A through passive establishment.

Table 2: Attacks found.

responding to its SHUTDOWN message. In the second attack,
the attacker exploits the unexpected packet logic in §5.2.4
to guide a peer out of passive teardown and back into Estab-
lished. The third and fourth attacks are similar and involve
guiding one peer through establishment to de-synchronize it
with the other, leading to a half-open connection.

Replay. KORG synthesizes one attack where the attacker
captures and replays an ABORT message sent by a peer before
both peers establish a new TSN. The attacker can keep replay-
ing the ABORT message indefinitely, preventing the peers from
establishing a connection. No other attacks were found. This
is expected, as the OOTB logic and TSNs should prevent a
replay attacker from injecting old packets.

On-Path. KORG synthesizes four similar attacks where the
attacker guides both peers into an association, and then spoofs
each peer, sending a SHUTDOWN to the other. In general, an On-
Path attacker is so powerful that we expect it can manipulate
either peer into any state it pleases, as it totally controls the
network, so this is unsurprising. KORG synthesizes two more
attacks, one for each of the half-open properties, both similar
to the last attack reported with the Evil-Server attacker model.

Note, the reason we do not rediscover the CVE attack in
the Evil-Server or On-Path attacker model is that we restrict
the attacker in both to only send valid messages, whereas the
CVE attack requires an invalid INIT. We put this restriction in
place in our model to avoid state-space explosion. In general,
every attack that is possible in the Off-Path attacker model is
also possible in the Evil-Server and On-Path ones.

5.3 Patch Verification

Next, we re-run our analysis with the CVE patch enabled.
In the Off-Path attacker model, KORG terminates without
finding any attacks. Since KORG found the vulnerability in

the Off-Path attacker model when the patch was disabled, and
reports no attacks in that same attacker model when the patch
is enabled, and as KORG is complete, this suffices to prove
that the patch resolves the vulnerability. In the other attacker
models, we find the exact same attacks as those reported in
Table 2, and nothing more. This proves the patch does not
introduce any new attack vectors against our properties.

5.4 Ambiguity Analysis
We next configure our model with the incorrect interpretation
of the ambiguous text and run it interactively in SPIN. We
find that the incorrect interpretation could enable a denial-
of-service in the form of a half-open connection, which we
illustrate in Figure 13. We consulted with the lead SCTP RFC
author who confirmed that the misinterpretation we describe
could enable such an attack. The attack is not possible if
the text is interpreted correctly. Out of concern that a real
implementation might have misinterpreted the RFC document,
we manually analyzed the source for both the Linux and
FreeBSD implementations, and tested both implementations
with PACKETDRILL, finding that neither made this mistake.

6 Related Work

There are many automated attack discovery tools, each crafted
to a particular variety of bug or mechanism of attack, e.g.,
SNAKE [32] (which fuzzes network protocols), TCPWN [31]
(which finds throughput attacks against TCP congestion con-
trol implementations), TAMARIN [42] and PROVERIF [13]
(which find attacks against secrecy in cryptographic proto-
cols), KORG [64] (which finds communication attacks against
network protocols), and so on. Some of these tools (e.g.,
KORG) are general purpose, designed to attack any correct-

12

ATTACKER PEERA PEERB

Cookie_Echoed Closed

Closed
Closed

INIT,itag=i3

INIT_ACK,vtag=i1 ,itag=i1

ABORT,vtag=i1

COOKIE_ECHO,vtag=i2

Closed

EstablishedClosed

COOKIE_ACK,vtag=i1

Figure 13: Message sequence chart showing the vtag-
disclosure vulnerability enabled by misinterpretation of the
ambiguous RFC text reported in Section 3.3. Note the strict
timing requirements necessary for a successful attack.

ness property, while others (e.g., TAMARIN or PROVERIF)
are designed to target specific types of properties such as se-
crecy and trace-equivalence. One work, which studied TCP
and ABP, suggested reactive controller synthesis (RCS) as an
alternative to KORG’s approach [40]. KORG generates attacks
that sometimes succeed, depending on choices made by the
peers, whereas the RCS method only outputs attacks that al-
ways succeed; but such attacks do not always exist. Another
approach, which Fiterau-Brostean et. al. [20] successfully
applied to various SSH [67] and DTLS [50] implementa-
tions, describes incorrect behaviors using automata (rather
than properties). This specification style makes sense when
generic bug patterns are known ahead of time.

Formal methods such as theorem proving, model check-
ing, property-based testing, and attack synthesis for pro-
tocols have been applied to TLS [17] and accountable
proxying over it [12], QUIC [41], Bluetooth [66], 5G [7]
and its key-establishment stack [43], TCP congestion con-
trol [6] and the combination of Karn’s Algorithm and the
RTO computation upon which it relies [63], the TCP es-
tablishment routine [44, 46, 64], and contactless EMV pay-
ments [8, 47], to name a few. Compared to many of these
systems, such as TCP which has been studied for over 30
years [9, 25, 27, 31, 32, 46, 53, 64], much less is known about
the security of SCTP, particularly from an FM perspective.

Of the prior works that applied formal methods to the
security of SCTP, only the Uppaal analysis by Saini and
Fehnker [52] used a technology (model-checking) that can
verify arbitrary properties. They reported two properties in
their paper; the first is similar to our φ2. The second says
an adversary only capable of sending INIT packets cannot
cause a victim peer to change state. This property is trivial
for us because we use an FSM model where the peer states
are precisely the model states. And in our model, the only

transition out of Closed that happens upon receiving an INIT
is a self-loop that sends an INIT_ACK and returns to Closed.
In contrast, in Saini and Fehnker’s model the peer state is a
variable in memory, while the model states are totally differ-
ent (e.g., LC1, LC2). Thus, the property merits verification in
their model but not ours. Saini and Fehnker’s work is the only
one we are aware of that studied SCTP in the context of an
attacker using formal methods. But their attacker was only
capable of sending INIT messages, in contrast to our attacker
models which are much more sophisticated, and their attacker
could not spoof the port and IP of a peer. Hence, they could
not model (and so did not find) the CVE attack.

Another line of inquiry aims to model the performance of
SCTP, e.g., using numerical analyses and simulations [16].
For example, Fu and Atiquzzaman built an analytical model
of SCTP congestion control, including multihoming, an SCTP
feature not available in TCP. They compared their model to
simulations and found it to be accurate in estimating steady-
state throughput of multihomed paths [22]. Such models are
also used to evaluate new features, e.g., as in [68].

7 Conclusion

In this work we formally modeled SCTP and specified ten
novel LTL correctness properties based on a close reading
of the RFCs. We proved that in the absence of an attacker,
the protocol satisfies all ten properties. We used KORG to
synthesize attacks against our model for four novel attacker
models, Off-Path, Evil-Server, Replay, and On-Path, and for
two configurations of the SCTP model – one without the RFC
9260 patch and another with it. This required improvements
to KORG, which we open-sourced with the paper artifacts.
Without the patch, we found the CVE-2021-3772 attack in
the Off-Path attacker model; a variety of Evil-Server and On-
Path attacks; and one Replay attack. Then we repeated our
analysis with the patch, and found that it eliminated the CVE
vulnerability but did not eliminate any other attacks in other
attacker models, nor introduce new vulnerabilities.

We also explored extending KORG to not just discover vul-
nerabilities, but synthesize patches too. We found the task
infeasible as the search space for edits is enormous, and each
edit requires re-verifying. And since PROMELA does com-
position over FIFO channels, reasoning about the composite
Kripke Structure and tying it back to the PROMELA encod-
ing proved very challenging. Though we failed to synthesize
patches in this work, we believe patch synthesis may be plau-
sible in a more automata-theoretic context.

Our attacks highlight the need to explicitly handle unex-
pected but valid packets and set reasonable timer values. We
reported an ambiguity in RFC 9260, one interpretation of
which could lead to a vulnerability. We analyzed the Linux
and FreeBSD SCTP implementations using PACKETDRILL
and found both correctly interpreted the ambiguous text. We
concluded with a recommendation for how the text could be

13

made unambiguous in an erratum or future RFC.

References

[1] packetdrill. https://github.com/nplab
/ p a c k e t d r i l l / t r e e / m a s t er. Commit
7f3daabd7feed2b18b958e870f973fec92879d98, ac-
cessed 31 July 2023.

[2] SCTP. https://github.com/torvalds/linux/tr
ee/master/net/sctp. Accessed 15 March 2023.

[3] User Datagram Protocol. RFC 768, Aug. 1980.

[4] Sctp. https://man.freebsd.org/cgi/man.cgi?qu
ery=sctp&sektion=4&manpath=FreeBSD+7.0-REL
EASE, 2006. Accessed 1 May 2023.

[5] Data communication. https://webrtcforthecuriou
s.com/docs/07-data-communication/, November
2022. Accessed 31 July 2023.

[6] ARUN, V., ARASHLOO, M. T., SAEED, A., ALIZADEH,
M., AND BALAKRISHNAN, H. Toward formally ver-
ifying congestion control behavior. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (2021),
pp. 1–16.

[7] BASIN, D., DREIER, J., HIRSCHI, L., RADOMIROVIC,
S., SASSE, R., AND STETTLER, V. A formal analysis
of 5g authentication. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications
security (2018), pp. 1383–1396.

[8] BASIN, D., SASSE, R., AND TORO-POZO, J. The emv
standard: Break, fix, verify. In 2021 IEEE Symposium on
Security and Privacy (SP) (2021), IEEE, pp. 1766–1781.

[9] BELLOVIN, S. M. Security problems in the tcp/ip proto-
col suite. ACM SIGCOMM Computer Communication
Review 19, 2 (1989), 32–48.

[10] BEN HENDA, N. Generic and efficient attacker mod-
els in spin. In Proceedings of the 2014 international
SPIN symposium on model checking of software (2014),
pp. 77–86.

[11] BHARGAVAN, K., BLANCHET, B., AND KOBEISSI, N.
Verified models and reference implementations for the
tls 1.3 standard candidate. In 2017 IEEE Symposium on
Security and Privacy (SP) (2017), IEEE, pp. 483–502.

[12] BHARGAVAN, K., BOUREANU, I., DELIGNAT-
LAVAUD, A., FOUQUE, P.-A., AND ONETE, C. A
formal treatment of accountable proxying over tls. In
2018 IEEE Symposium on Security and Privacy (SP)
(2018), IEEE, pp. 799–816.

[13] BLANCHET, B., ET AL. Modeling and verifying secu-
rity protocols with the applied pi calculus and proverif.
Foundations and Trends® in Privacy and Security 1, 1-2
(2016), 1–135.

[14] CARDWELL, N., CHENG, Y., BRAKMO, L., MATHIS,
M., RAGHAVAN, B., DUKKIPATI, N., CHU, H.-K. J.,
TERZIS, A., AND HERBERT, T. PACKETDRILL: Script-
able network stack testing, from sockets to packets. In
2013 USENIX Annual Technical Conference (USENIX
ATC 13) (2013), pp. 213–218.

[15] CARO, A. L., POON, K., TÜXEN, M., STEWART, R. R.,
AND ARIAS-RODRIGUEZ, I. Stream Control Transmis-
sion Protocol (SCTP) Specification Errata and Issues.
RFC 4460, Apr. 2006.

[16] CHUKARIN, A., AND PERSHAKOV, N. Performance
evaluation of the stream control transmission protocol.
In MELECON 2006-2006 IEEE Mediterranean Elec-
trotechnical Conference (2006), IEEE, pp. 781–784.

[17] CREMERS, C., HORVAT, M., HOYLAND, J., SCOTT, S.,
AND VAN DER MERWE, T. A comprehensive symbolic
analysis of tls 1.3. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (2017), pp. 1773–1788.

[18] DOLEV, D., AND YAO, A. On the security of public key
protocols. IEEE Transactions on information theory 29,
2 (1983), 198–208.

[19] EDDY, W. Transmission Control Protocol (TCP). RFC
9293, Aug. 2022.

[20] FITERAU-BROSTEAN, P., JONSSON, B., SAGONAS, K.,
AND TÅQUIST, F. Automata-based automated detection
of state machine bugs in protocol implementations. In
NDSS (2022).

[21] FLOYD, S., HANDLEY, M. J., AND KOHLER, E. Data-
gram Congestion Control Protocol (DCCP). RFC 4340,
Mar. 2006.

[22] FU, S., AND ATIQUZZAMAN, M. Performance model-
ing of SCTP multihoming. In GLOBECOM’05. IEEE
Global Telecommunications Conference, 2005. (2005),
vol. 2, IEEE, pp. 6–pp.

[23] GARDNER, M., GRUS, J., NEUMANN, M., TAFJORD,
O., DASIGI, P., LIU, N., PETERS, M., SCHMITZ, M.,
AND ZETTLEMOYER, L. Allennlp: A deep semantic
natural language processing platform. arXiv preprint
arXiv:1803.07640 (2018).

[24] GOGA, N., COSTACHE, S., AND MOLDOVEANU, F. A
formal analysis of iso/ieee p11073-20601 standard of
medical device communication. In 2009 3rd Annual
IEEE Systems Conference (2009), IEEE, pp. 163–166.

14

https://github.com/nplab/packetdrill/tree/master
https://github.com/nplab/packetdrill/tree/master
https://github.com/torvalds/linux/tree/master/net/sctp
https://github.com/torvalds/linux/tree/master/net/sctp
https://man.freebsd.org/cgi/man.cgi?query=sctp&sektion=4&manpath=FreeBSD+7.0-RELEASE
https://man.freebsd.org/cgi/man.cgi?query=sctp&sektion=4&manpath=FreeBSD+7.0-RELEASE
https://man.freebsd.org/cgi/man.cgi?query=sctp&sektion=4&manpath=FreeBSD+7.0-RELEASE
https://webrtcforthecurious.com/docs/07-data-communication/
https://webrtcforthecurious.com/docs/07-data-communication/

[25] GONT, F. ICMP attacks against TCP. https://data
tracker.ietf.org/doc/rfc5927/, july 2022.

[26] GUO, C., AND TÜEXEN, M. Questions on rfc4960
abort init tag equal 0 in init msg and manditory info less
than 20 bytes. https://mailarchive.ietf.org/a
rch/msg/tsvwg/nna1IVrRIKPBKOwmv5JC3X5UQSA/.
Accessed 5 February 2024.

[27] HARRIS, B., AND HUNT, R. Tcp/ip security threats
and attack methods. Computer communications 22, 10
(1999), 885–897.

[28] HOLZMANN, G. J. The model checker SPIN. IEEE
Transactions on software engineering 23, 5 (1997), 279–
295.

[29] HOLZMANN, G. J. Redundant software (and hardware)
ensured curiosity reached its destination and functioned
as its designers intended. Communications of the ACM
(2 2014).

[30] HOLZMANN, G. J., AND SMITH, M. H. Automating
software feature verification. Bell Labs Technical Jour-
nal 5, 2 (2000), 72–87.

[31] JERO, S., HOQUE, M. E., CHOFFNES, D. R., MIS-
LOVE, A., AND NITA-ROTARU, C. Automated at-
tack discovery in tcp congestion control using a model-
guided approach. In NDSS (2018).

[32] JERO, S., PACHECO, M. L., GOLDWASSER, D., AND
NITA-ROTARU, C. Leveraging textual specifications
for grammar-based fuzzing of network protocols. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence (2019), vol. 33, pp. 9478–9483.

[33] KHOT, I. A smaller, faster video calling library for
our apps. https://engineering.fb.com/2020/
12/21/video-engineering/rsys/, december 2020.
Accessed 31 July 2023.

[34] KOBEISSI, N., BHARGAVAN, K., AND BLANCHET, B.
Automated verification for secure messaging protocols
and their implementations: A symbolic and computa-
tional approach. In 2017 IEEE European symposium on
security and privacy (EuroS&P) (2017), IEEE, pp. 435–
450.

[35] KUMAR, A., VON HIPPEL, M., MANOLIOS, P., AND
NITA-ROTARU, C. Formal model-driven analysis of re-
silience of gossipsub to attacks from misbehaving peers.
arXiv preprint arXiv:2212.05197 (2022).

[36] LOHR, H., AND DKNAPPETTMSFT. What’s new in the
remote desktop WebRTC redirector service. https://
learn.microsoft.com/en-us/azure/virtual-d
esktop/whats-new-webrtc, April 2023. Accessed 31
July 2023.

[37] LONG, X. SCTP enhancements for the verification tag.
https://github.com/torvalds/linux/commit
/32f8807a48ae55be0e76880cfe8607a18b5bb0df.
Accessed 5 February 2024.

[38] LONG, X. https://github.com/torvalds/linux/
commit/32f8807a48ae55be0e76880cfe8607a18b5
bb0df, October 2021.

[39] MARTINS, M. G. M., ET AL. Modelagem e análise
formal de algumas funcionalidades de um protocolo de
transporte através das redes de petri. Accessed 2 August
2023 at https://docplayer.com.br/146114380-M
odelagem-e-analise-formal-de-algumas-funci
onalidades-de-um-protocolo-de-transporte-a
traves-das-redes-de-petri.html.

[40] MATSUI, S., AND LAFORTUNE, S. Synthesis of win-
ning attacks on communication protocols using super-
visory control theory: two case studies. Discrete Event
Dynamic Systems (2022), 1–38.

[41] MCMILLAN, K. L., AND ZUCK, L. D. Formal specifi-
cation and testing of QUIC. In Proceedings of the ACM
Special Interest Group on Data Communication. 2019,
pp. 227–240.

[42] MEIER, S., SCHMIDT, B., CREMERS, C., AND BASIN,
D. The tamarin prover for the symbolic analysis of
security protocols. In Computer Aided Verification:
25th International Conference, CAV 2013, Saint Peters-
burg, Russia, July 13-19, 2013. Proceedings 25 (2013),
Springer, pp. 696–701.

[43] MILLER, R., BOUREANU, I., WESEMEYER, S., AND
NEWTON, C. J. The 5g key-establishment stack: In-
depth formal verification and experimentation. In Pro-
ceedings of the 2022 ACM on Asia Conference on Com-
puter and Communications Security (2022), pp. 237–
251.

[44] MUSUVATHI, M., ENGLER, D. R., ET AL. Model
checking large network protocol implementations. In
NSDI (2004), vol. 4, pp. 12–12.

[45] OAKLEY, L., OPREA, A., AND TRIPAKIS, S. Ad-
versarial robustness verification and attack synthesis
in stochastic systems. In 2022 IEEE 35th Computer
Security Foundations Symposium (CSF) (2022), IEEE,
pp. 380–395.

[46] PACHECO, M. L., VON HIPPEL, M., WEINTRAUB, B.,
GOLDWASSER, D., AND NITA-ROTARU, C. Automated
attack synthesis by extracting finite state machines from
protocol specification documents. In 2022 IEEE Sympo-
sium on Security and Privacy (SP) (2022), IEEE, pp. 51–
68.

15

https://datatracker.ietf.org/doc/rfc5927/
https://datatracker.ietf.org/doc/rfc5927/
https://mailarchive.ietf.org/arch/msg/tsvwg/nna1IVrRIKPBKOwmv5JC3X5UQSA/
https://mailarchive.ietf.org/arch/msg/tsvwg/nna1IVrRIKPBKOwmv5JC3X5UQSA/
https://engineering.fb.com/2020/12/21/video-engineering/rsys/
https://engineering.fb.com/2020/12/21/video-engineering/rsys/
https://learn.microsoft.com/en-us/azure/virtual-desktop/whats-new-webrtc
https://learn.microsoft.com/en-us/azure/virtual-desktop/whats-new-webrtc
https://learn.microsoft.com/en-us/azure/virtual-desktop/whats-new-webrtc
https://github.com/torvalds/linux/commit/32f8807a48ae55be0e76880cfe8607a18b5bb0df
https://github.com/torvalds/linux/commit/32f8807a48ae55be0e76880cfe8607a18b5bb0df
https://github.com/torvalds/linux/commit/32f8807a48ae55be0e76880cfe8607a18b5bb0df
https://github.com/torvalds/linux/commit/32f8807a48ae55be0e76880cfe8607a18b5bb0df
https://github.com/torvalds/linux/commit/32f8807a48ae55be0e76880cfe8607a18b5bb0df
https://docplayer.com.br/146114380-Modelagem-e-analise-formal-de-algumas-funcionalidades-de-um-protocolo-de-transporte-atraves-das-redes-de-petri.html
https://docplayer.com.br/146114380-Modelagem-e-analise-formal-de-algumas-funcionalidades-de-um-protocolo-de-transporte-atraves-das-redes-de-petri.html
https://docplayer.com.br/146114380-Modelagem-e-analise-formal-de-algumas-funcionalidades-de-um-protocolo-de-transporte-atraves-das-redes-de-petri.html
https://docplayer.com.br/146114380-Modelagem-e-analise-formal-de-algumas-funcionalidades-de-um-protocolo-de-transporte-atraves-das-redes-de-petri.html

[47] RADU, A.-I., CHOTHIA, T., NEWTON, C. J., BOURE-
ANU, I., AND CHEN, L. Practical emv relay protection.
In 2022 IEEE Symposium on Security and Privacy (SP)
(2022), IEEE, pp. 1737–1756.

[48] RED HAT, I. CVE-2021-3772 detail. https://nvd.
nist.gov/vuln/detail/CVE-2021-3772. Accessed
15 March 2023.

[49] RESCORLA, E. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, Aug. 2018.

[50] RESCORLA, E., TSCHOFENIG, H., AND MODADUGU,
N. The datagram transport layer security (DTLS) proto-
col version 1.3. https://www.rfc-editor.org/rf
c/rfc9147, April 2022.

[51] RÜNGELER, I., AND TÜXEN, M. Sctp support in the
inet framework and its analysis in the wireshark packet
analyzer. In Multihomed Communication with SCTP
(Stream Control Transmission Protocol). CRC Press,
2012, pp. 175–202.

[52] SAINI, S., AND FEHNKER, A. Evaluating the stream
control transmission protocol using Uppaal. arXiv
preprint arXiv:1703.06568 (2017).

[53] SCHUBA, C. L., KRSUL, I. V., KUHN, M. G., SPAF-
FORD, E. H., SUNDARAM, A., AND ZAMBONI, D.
Analysis of a denial of service attack on tcp. In Proceed-
ings. 1997 IEEE Symposium on Security and Privacy
(Cat. No. 97CB36097) (1997), IEEE, pp. 208–223.

[54] STEWART, R. Stream control transmission protocol.
https://www.rfc-editor.org/rfc/rfc4960,
September 2007. Accessed 23 February 2023.

[55] STEWART, R., TUEXEN, M., AND CAMARILLO, G. Se-
curity attacks found against the stream control trans-
mission protocol (SCTP) and current countermeasures.
https://datatracker.ietf.org/doc/html/rfc5062, September
2007.

[56] STEWART, R., TÜXEN, M., AND LEI, P. SCTP: What
is it, and how to use it? In Proceedings of BSDCan: The
Technical BSD Conference (2008).

[57] STEWART, R., TÜXEN, M., AND NIELSEN, K. Stream
control transmission protocol. https://www.rfc-e
ditor.org/rfc/rfc9260, June 2022. Accessed 15
March 2023.

[58] STEWART, R., XIE, Q., MORNEAULT, K., SHARP,
C., SCHWARZBAUER, H., TAYLOR, T., RYTINA, I.,
KALLA, M., ZHANG, L., AND PAXSON, V. Stream
control transmission protocol. https://www.rfc-edi
tor.org/rfc/rfc2960, October 2000. Accessed 15
March 2023.

[59] VANIT-ANUNCHAI, S. Towards formal modelling and
analysis of SCTP connection management. In Proceed-
ings of the Ninth Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools (2008).

[60] VANIT-ANUNCHAI, S. Validating SCTP simultane-
ous open procedure. In Fundamentals of Software En-
gineering: 5th International Conference, FSEN 2013,
Tehran, Iran, April 24-26, 2013, Revised Selected Papers
5 (2013), Springer, pp. 233–249.

[61] VARDI, M. Y., AND WOLPER, P. An automata-theoretic
approach to automatic program verification. In 1st Sym-
posium in Logic in Computer Science (LICS) (1986),
IEEE Computer Society.

[62] VASS, J. How Discord handles two and half million
concurrent voice users using WebRTC. https://disc
ord.com/blog/how-discord-handles-two-and-h
alf-million-concurrent-voice-users-using-w
ebrtc, September 2018. Accessed 31 July 2023.

[63] VON HIPPEL, M., MCMILLAN, K. L., NITA-ROTARU,
C., AND ZUCK, L. D. A formal analysis of karn’s
algorithm. In International Conference on Networked
Systems (2023), Springer, pp. 43–61.

[64] VON HIPPEL, M., VICK, C., TRIPAKIS, S., AND NITA-
ROTARU, C. Automated attacker synthesis for dis-
tributed protocols. In Computer Safety, Reliability, and
Security: 39th International Conference, SAFECOMP
2020, Lisbon, Portugal, September 16–18, 2020, Pro-
ceedings 39 (2020), Springer, pp. 133–149.

[65] WANG, J., ZHANG, S., AND CHEN, F. Modeling and
verification of sctp association management based on
colored petri nets. In 2008 ISECS International Col-
loquium on Computing, Communication, Control, and
Management (2008), vol. 1, IEEE, pp. 379–383.

[66] WU, J., WU, R., XU, D., TIAN, D. J., AND BIANCHI,
A. Formal model-driven discovery of bluetooth protocol
design vulnerabilities. In 2022 IEEE Symposium on
Security and Privacy (SP) (2022), IEEE, pp. 2285–2303.

[67] YLONEN, T., AND LONVICK, C. The secure shell
(SSH) transport layer protocol. https://www.rfc-e
ditor.org/rfc/rfc4253, january 2006.

[68] ZOU, J., UYAR, M. Ü., FECKO, M. A., AND SAMTANI,
S. Throughput models for SCTP with parallel subflows.
Computer Networks 50, 13 (2006), 2160–2182.

16

https://nvd.nist.gov/vuln/detail/CVE-2021-3772
https://nvd.nist.gov/vuln/detail/CVE-2021-3772
https://www.rfc-editor.org/rfc/rfc9147
https://www.rfc-editor.org/rfc/rfc9147
https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc9260
https://www.rfc-editor.org/rfc/rfc9260
https://www.rfc-editor.org/rfc/rfc2960
https://www.rfc-editor.org/rfc/rfc2960
https://discord.com/blog/how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc
https://discord.com/blog/how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc
https://discord.com/blog/how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc
https://discord.com/blog/how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc
https://www.rfc-editor.org/rfc/rfc4253
https://www.rfc-editor.org/rfc/rfc4253

8 Appendix

8.1 History of CVE-2021-3772
The vulnerability reported in CVE-2021-3772 arose from the
following text in RFC 4960 [54]:

If the value of the Initiate Tag in a received INIT
chunk is found to be 0, the receiver MUST treat it
as an error and close the association by transmitting
an ABORT.

As illustrated in Figure 3, if an implementation did not check
the validity of the INIT before transmitting an ABORT, then
the RFC allowed for a DoS attack where the attacker would
transmit an invalid INIT and thus trigger the victim to close
an otherwise valid association. This vulnerability was first
reported in the SCTP mailing list [26] and then reported in
CVE-2021-3772 [48]. The vulnerability was subsequently
patched in the Linux implementation by swapping the order
of operations, to ensure the vtag is always checked before the
itag [37]. The RFC was updated in 9260 [57] to say:

If the value of the Initiate Tag in a received INIT
chunk is found to be 0, the receiver MUST silently
discard the packet.

and FreeBSD [4] implemented this patch when it was updated
to reflect the new RFC.

8.2 User Model
We model not only each peer but also the user controlling
each peer. The user commands are User_Assoc, User_Abort,
and User_Shutdown. A user and its peer are synchronously
connected. A subtlety of this composition is that the user
is blocked from issuing unexpected commands, such as, a
User_Assoc when the peer is already in Established. When the
user issues User_Assoc or User_Shutdown the peer responds
as shown in Figure 5. When the user issues User_Abort, the
peer transmits an ABORT and transitions to Closed. The user
is only allowed to issue a User_Abort when the peer is in an
active association. The user herself is modeled nondetermin-
istically with a single state, and a self-loop to and from that
state to send each user command.

8.3 Erratum to RFC 9260
Beyond resolving the ambiguity described in Section 3.3, we
have several minor suggestions for places the SCTP RFC
could be made more clear through an erratum. First, we sug-
gest incorporating the self-loop at Closed that occurs upon re-
ceiving a SHUTDOWN_COMPLETE, into the State Association Di-
agram in Section 4, closing the active/active teardown routine.
Second, we suggest incorporating “initialization collision”
(active/active establishment) into that same diagram, since it

chan attacker_mem = [2] of {
mtype:msgs,
mtype:tag,
mtype:tag,
byte

};
active proctype attacker_replay() {
mtype:msgs b_0;
mtype:tag b_1, b_2;
byte b_3;
do
:: atomic {
AtoB ?? <b_0, b_1, b_2, b_3>
-> attacker_mem ! b_0, b_1, b_2, b_3; }

:: atomic {
attacker_mem ?? b_0, b_1, b_2, b_3
-> AtoB ! b_0, b_1, b_2, b_3; }

:: atomic {
attacker_mem ?? b_0, b_1, b_2, b_3; }

:: break
od

}

Figure 14: The replay attacker gadget automatically synthe-
sized by KORG.

is a supported flow of the establishment routine and the de-
fault for WebRTC. Third, we suggest expanding 5.2 to explain
how to handle other unexpected chunks, e.g., COOKIE_ERROR,
SHUTDOWN_COMPLETE, etc., as such messages could be used
by an Evil Server to deadlock a poorly implemented peer.

8.4 Performance
We time our experiments and patch verification tasks, and
almost always, KORG terminates in seconds or minutes,
with one interesting exception. In the Off-Path experiments,
KORG takes about two hours to confirm that no attacks ex-
ist against φ8, and about an hour and a half to find the CVE
attack against φ9. Recall that φ8 and φ9 are identical, except
that the peer roles are reversed. Further inspection reveals
these two properties are the largest in our property set, and
the Off-Path attacker model is the largest attacker model, as it
includes four processes (two peers, an attacker, and a channel)
whereas the others involve fewer. The reason these two anal-
yses take much longer than the others naturally follows, as
KORG reduces to LTL model-checking, the runtime of which
is polynomial in the size of the model and O(log2 |φ|) in the
size of φ [61]. This is further highlighted by the fact that the
patch verification tasks terminate in a few minutes – and all
the patch does is remove a transition from the code, reducing
the model size. We report all run-times in Table 3.

17

Off-Path Evil-Server Replay On-Path
E P E P E P E P

φ1 2:20 2:13 0:23 0:23 0:3 0:3 0:15 0:15
φ2 8:43 11:14 0:21 0:21 0:2 0:2 0:26 0:26
φ3 3:20 12:53 0:20 0:20 0:2 0:2 0:25 0:25
φ4 1:45 1:26 0:11 0:11 0:2 0:2 0:14 0:14
φ5 2:57 1:35 0:10 0:10 0:2 0:2 0:12 0:12
φ6 3:19 18:8 0:20 0:20 0:2 0:2 0:25 0:25
φ7 1:43 4:41 0:11 0:10 0:2 0:2 0:13 0:14
φ8 123:42 7:7 1:6 1:7 0:2 0:2 1:34 1:34
φ9 86:10 6:48 1:5 1:5 0:2 0:2 0:11 0:11
φ10 0:4 0:4 0:3 0:4 0:2 0:2 0:4 0:4

Table 3: Time taken (min:sec) to perform each (E) experiment and (P) patch verification on a 16GB M1 Macbook Air.

// Property 1
G((st[0] == Closed) -> (X(F(st[0] == Closed || st[0] == Established || st[0] == CookieWait))))
// Property 2
G(F(st[0] != ost[0] || st[1] != ost[1] || (st[0] == Closed && st[1] == Closed) ||

(st[0] == Established && st[1] == Established)))
// Property 3
G((st[0] != ost[0] && ost[0] == ShutdownAckSent) -> (st[0] == Closed))
// Property 4
G(F(st[0] != CookieEchoed || timers[0] == T1_COOKIE))
// Property 5
G(st[0] != ShutdownReceived || st[1] != ShutdownReceived)
// Property 6
G((st[0] != ost[0] && ost[0] == ShutdownReceived) -> (st[0] == ShutdownAckSent || st[0] == Closed))
// Property 7
G(st[0] != CookieEchoed || st[1] != ShutdownReceived)
// Property 8
G((ost[1] == Established && ost[0] == Closed && everAborted == false && everTimedOut == false &&

ost[0] != st[0]) -> (st[0] == Established || st[0] == IntermediaryCookieWait))
// Property 9
G((ost[0] == Established && ost[1] == Closed && everAborted == false && everTimedOut == false &&

ost[1] != st[1]) -> (st[1] == Established || st[1] == IntermediaryCookieWait))
// Property 10
G((ost[0] == Established && (st[0] == ShutdownSent || st[0] == ShutdownReceived)) -> F(st[0] == Closed))

Figure 15: Our ten LTL properties are formulated in PROMELA as follows. We define our atomic propositions as follows in
PROMELA, where st holds the state of each peer, ost holds the prior one, and timers holds the peers’ timers.

Threat Model P Q I/O
Off-Path USERA ∥ PEERA ∥ CHANNEL ∥ PEERB ∥ USERB Empty Program Sends invalid messages
Evil-Server USERA ∥ PEERA ∥ CHANNEL ∥ USERB PEERB Sends and receives valid messages
Replay USERA ∥ PEERA ∥ CHANNEL ∥ PEERB ∥ USERB CHANNEL Sends messages previously received
On-Path USERA ∥ PEERA ∥ PEERB ∥ USERB CHANNEL Sends and receives valid messages

Table 4: KORG inputs for each attacker model. P is the invariant component, which the attacker cannot change. Q is the variant
component, which the attacker can prefix with a finite sequence of communication events. In the Off-Path attacker model, Q is
the empty program, because the Off-Path attacker does not attach itself to any pre-existing system component. I/O specifies what
the attacker is allowed to receive or send. φ will be one of the properties in §3.5, and the peer model (run by PEERA and PEERB)
is described in Section 3.2.

18

	Introduction
	SCTP
	Overview
	Prior Validation

	Our SCTP Model
	Overview
	Model Details
	Ambiguity in the RFC
	Abstractions and Limitations
	Correctness Properties
	Validating Our Model

	SCTP Attack Synthesis
	Attack Synthesis
	Attacker Models
	Changes to Korg

	Experimental Results
	Experimental Methodology
	Attacks
	Patch Verification
	Ambiguity Analysis

	Related Work
	Conclusion
	Appendix
	History of CVE-2021-3772
	User Model
	Erratum to RFC 9260
	Performance

