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Introduction and Motivation

Automated Formal Verification (model checking) involves exploiting Turing‐decidable
fragments of logic to ensure verification is decidable
Linear Temporal Logic (LTL), among other logics, sees practical use with tools Spin, TLC [1]
LTL model checking suffers from state‐space explosion, the exponential blowup in search
space with model size.
With the goal of making model checking more efficient via heuristic search, we motivate and
develop the notion of language bounds

Relevant Definitions

A Büchi automata is a tuple B = (Q, Σ, δ, q0, F ) where:

Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q are the accepting states.
Σ is a finite input alphabet.
δ : Q × (Σ ∪ {ϵ}) → 2Q is the transition relation.
We consider some σ ∈ L(B) iff it visits any q ∈ Q infinitely often.

Linear Temporal Logic (LTL) is a modal logic for reasoning about program behaviors over time

Semantically, adds 'next', 'eventually', and 'always' to boolean logic
We denote a Büchi Automata M satisfying a LTL property ϕ in all program behaviors as
M |= ϕ.
Any given LTL property can be reduced to a Büchi Automata in polynomial time.

Background on Model Checking

We know by theChomskyHierarchywe cannot reason about all program behaviors in a decidable
way without scaling down complexity. It is only possible in the context of regular languages to
decidably reason about all program behaviors.

Because the language (the behavior) of a program is just a set, reasoning about all program behav‐
iors reduces to set operations:

L(A) ⊆ L(B) ⇔ L(A) ∩ L(B) = ∅
For regular languages, language inclusion and intersection emptiness are decidable in PSPACE‐
complete time [2]. The decidability of LTL model checking stems from this via the relation:

M |= φ

Kripke Structure ??? LTL Formula
↓ ↓

L(MA) ⊆ L(φA)
Büchi Automaton Büchi Automaton

To decide L(MA) ⊆ L(φA), we:

1. Reduce L(MA) ⊆ L(φA) to L(MA) ∩ L(φA) = ∅ in polynomial time
2. Construct the asynchronous composition and decide L(MA || φA) = ∅, which is just a

reachability problem
3. Exhaustively search MA || φA with Depth‐First Search

The exponential number of states produced via composition characterizes state‐space explosion.

Intersection Emptiness Heuristics

To motivate intersection emptiness, consider some MA = B1 || B2 || . . . || Bn. Then, notice the
LTL model checking problem becomes:

L(B1) ∩ L(B2) ∩ . . . ∩ L(Bn) ∩ L(φA) = ∅
We then search B1 || . . . || B1 || φA via on‐the‐fly composition. That is, from the initial state
(q(B1)

0 , . . . , q
(Bn)
0 , q

(φA)
0 ) we continually construct:

(state) ⇒
(

δ( state , Σ )
)

(Q(B1), . . . , Q(Bn), Q(φA)) ⇒
(

δ(B1)(Q(B1), Σ), . . . , δ(Bn)(Q(Bn), Σ), δ(φA)(Q(φA), Σ)
)

Then, we can iteratively search the state‐space of B1 || . . . || B1 || φA via a typical graph search
algorithm. For Büchi automata, we choose our termination condition to be finding a state whose
set of successors includes both an acceptance state and itself.

Heuristic Definition: But, what if we use heuristic graph search? After much experimentation, we
found the strongest heuristic (for some qi ∈ Q(Bi)) to guide us to the termination condition to be:

heuristic(node ⇔ (q1, q2, . . . , qn)) =
n∑

i=1
qi's distance from acceptance condition in Bi

Heuristic Implementation: A Büchi automata, like any graph structure, can be viewed as a network
of flows. We turn solving for this heuristic into an optimization problem over some linear program
for some Bi via the constraint scheme:

Initial state qi ⇒ 1 +
∑

qi incoming transitions =
∑

qi outgoing transitions
Accepting state(s) qi ⇒ 1 +

∑
qi incoming transitions = 2 +

∑
qi outgoing transitions

Other states qi ⇒
∑

qi incoming transitions =
∑

qi outgoing transitions
Minimize

∑
all transitions

We used Z3 (SMT), Gurobi (LP), and some pre‐processing tricks (read the paper) to efficiently
implement the above scheme.

Heuristic Performance Analysis:
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Figure 1. Heuristic performance over 10 randomly generated automata of different sizes. Averaged over 10 runs
per automata size.

We find while bug (counterexample) finding is pretty fast with heuristics, exhaustive verification
becomes much more expensive.

Language Bounds

Motivated by intersection emptiness heuristics results, we want to try to decide beforehand
whether we need to do an exhaustive search at all. To do so, we define language bounds:

Word Length Language Bounds: The shortest and longest length words in a language
Character Number Language Bounds: The lowest and highest number of characters in any
given word in a language

We can use these definitions to reason about program behaviors:

Language inclusion (L(A) ⊆ L(B)) requires all language bound intervals of A to be contained
in the language bound intervals of B

Similarly, intersection emptiness (L(A) ∩ L(B) = ∅) requires all language bound intervals of A
to be disjoint from the language bound intervals of B

Parikh Image: for a given word w, a Parikh image is a vector denoting the number of characters
in said word. i.e. abc → [a : 1, b : 1, c : 1]
Finding the minimum language bounds for regular languages is a solved problem [3] ‐ integer
programming can extract the minimal Parikh image (and thus the lower language bound) from a
language. We use the previously described constraint scheme to extract the parikh image, and
we can set our objective to minimize over all transitions or a single character.

The maximum language bounds for regular languages is not as straight forward since regular
languages can accept repeating words. We develop a procedure:

Built on top of depth‐first search, iteratively assign each node a set of polynomials describing
all possible Parikh images
We consider the set of accepting polynomials and test polynomial inclusion and intersection
emptiness via traditional numerical methods

a(b)∗c ⇒ a

b

c ⇒ 1xa + n1xb + 1xc

Figure 2. Polynomial Derivation Process (Regex), not Büchi

FutureWork & Opportunities

Automated verification is a rich problem space! Some ideas for future work:

Real‐world intersection emptiness (model checking) benchmarks
Polynomial‐time reduction between language inclusion and intersection emptiness
Heuristics for undecidable verification schemes (e.g., theorem proving in Lean)
Using linear programming and SMT to optimize other decidable logics (e.g., TLA+)
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