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Abstract

A significant amount of research is focused on developing and evaluating
large language models for a variety of code synthesis tasks. These include
synthesizing code from natural language, synthesizing tests from code, and
synthesizing explanations of code. In contrast, the behavior of instructional
code editing with LLMs is understudied. These are tasks in which the
model is provided a block of code and an instruction to modify the code.
The editing instruction may ask for a feature to be added or removed,
describe a bug and ask for a fix, or ask for a different kind of solution.
We introduce a carefully crafted benchmark of code editing tasks and
use it to evaluate several cutting edge LLMs. Our evaluation exposes a
significant gap between the capabilities of state-of-the-art open and closed
models. For example, even GPT-3.5-Turbo is better than the best open
model at code editing tasks. We also introduce a new, carefully curated,
permissively licensed training dataset of code editing tasks coupled with
natural language instructions. Using this training dataset, we show that we
can fine-tune open Code LLMs to significantly improve their code editing
capabilities, closing the gap between open and closed models. All code,
data, and models are available at https://github.com/nuprl/CanItEdit.

1 Introduction

Large language models of code (Code LLMs) are becoming an essential tool for software
engineering practice and research. There has been significant research on synthesizing
code from natural language instructions, but comparatively less attention has been given
to code editing tasks. However, LLM users expect models to be capable of editing code.
For example, the LMsys dataset of in-the-wild conversations with chatbots (Zheng et al.,
2023) has 4,188 conversations containing code, and 831 (19%) of these involve code editing,
where the user prompts the model to update code based on natural language instructions
(Appendix E). In general, code editing with an LLM encompasses activities like feature
addition or removal, bug fixing, and code refactoring (Zhang et al., 2023; Moon et al., 2023;
Shinn et al., 2023; Chen et al., 2023; Olausson et al., 2023; Jin et al., 2023).
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Instruction: Edit the C4 class and its methods to represent the C8 group instead.

-class C4(nn.Module):

+class C8(nn.Module):

- """Represents the cyclic group C4,

+ """Represents the cyclic group C8,

where each element represents a discrete rotation."""

def __init__(self):
super().__init__()

def size(self):
"""Outputs the size of this group."""

- return 4

+ return 8

def elements(self):
"""Returns all the elements of this group"""

- return torch.tensor([0., np.pi/2, np.pi, 3*np.pi/2])

+ d = np.pi / 4

+ return torch.tensor([0., d, d*2, d*3, d*4, d*5, d*6, d*7])

Figure 1: An abbreviated example of a code editing task from the CANITEDIT dataset (Figure
9 presents the full example). The model is tasked with editing the C4 group to represent C8
instead. The model is expected to infer the after code segment from the instruction and the
before code segment, as shown in the inferred code diff.

The ability to edit code is also essential for a model to be useful for an AI-focused code
editor such as Cursor (Cursor, 2023), Copilot Chat (Copilot, 2023), or ChatGPT Advanced
Data Analysis (ADA) (OpenAI, 2023a). Cursor and Copilot Chat facilitate edits with human-
written instructions. In contrast, ADA uses both human-written instructions and model-
generated reflections (Shinn et al., 2023; Fan et al., 2023; Phung et al., 2023) to extend and edit
code. This approach represents a step towards AI-driven code assistance. In both scenarios,
instructional code editing is employed, which we define as a function M(c, I) → c′, where c is
the original code, I is the instruction, and c′ is the modified code. Figure 1 illustrates this
process, showing how the model edits a code segment from a given instruction.

Model-generated reflections and human-written instructions both describe desired code
changes. However, they differ in the level of detail: reflections, usually more detailed, are
generated by a model with access to the code, offering richer context and potentially a
strategic plan for code modifications. In contrast, human-written instructions are typically
shorter and less detailed but may express the true user’s intent more clearly. We refer to
these as descriptive and lazy instructions, respectively. We thoroughly analyze examples of
such instructions in Appendix E.

In this work, we introduce CANITEDIT, a novel dataset comprising 105 hand-crafted in-
structional code editing problems, featuring both descriptive and lazy instructions and an
extensive hidden test suite. Designed to assess a model’s proficiency in handling diverse
code editing scenarios, CANITEDIT serves as a benchmark for evaluating state-of-the-art
Code LLMs in instructional code editing. Our evaluation focuses on measuring the accuracy
of a given model’s ability to write correct code modifications without introducing unneces-
sary code. We conduct comprehensive assessments of closed and open models, revealing
significant performance disparities between the leading closed and open models (§5). To
help address this gap, we propose a training dataset and methodology for code editing. Our
findings demonstrate that fine-tuning open Code LLMs on this dataset can significantly
enhance code editing performance (§4).
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To summarize, we make four main contributions: (1) We introduce CANITEDIT, a dataset
of instructional code editing problems, designed to evaluate the code editing capabilities
of large language models (§3). (2) We propose a novel metric, ExcessCode, for quantifying
the typical volume of unused code produced by a model when generating the correct
code edits (§5.1). (3) We perform a thorough evaluation of the latest Code LLMs in the
context of code editing, providing insights into their current capabilities (§5). (4) Finally, we
present a specially tailored training dataset for code editing, along with an effective training
methodology, demonstrating significantly enhanced code editing performance through
fine-tuning models of varying sizes (§4).

2 Related Work

Instruction-following Language Models. Correctly prompting an LLM is crucial for it to
perform a desired task. There are multiple methods for instruction tuning LLMs to better
adhere to natural language instructions. One method involves employing human annotators
to create sample instructions and provide feedback on numerous model outputs (Ouyang
et al., 2022; Köpf et al., 2023). This method is costly and demands substantial resources. An
alternative, cost-effective method is to use an LLM to self-instruct, generating instructions
from a smaller set of human-written seed instructions (Wang et al., 2023). These methods
have been applied to generate datasets for instruction-tuning Code LLMs (Chaudhary, 2023;
Luo et al., 2023). Specific to code generation, another strategy to instruction-tune an LLM
is to use commit messages as instructions (Muennighoff et al., 2023). In this paper, we
use commit messages as instructions for code editing. Our results demonstrate that while
instruction-tuned models can edit code, they are not as effective as models that we explicitly
train for this task (§5).

Code Generation Benchmarks. Several benchmarks exist that test a model’s code genera-
tion ability. HumanEval and MBPP are two prominent benchmarks for evaluating LLMs
in Python programming (Chen et al., 2021; Austin et al., 2021). MultiPL-E expands these
benchmarks to 18+ additional programming languages (Cassano et al., 2023b). These bench-
marks assess model-generated candidate completions against a series of human-authored
unit tests. EvalPlus (Liu et al., 2023) utilizes mutation testing to expand the test suites of
the Python benchmarks. All of these benchmarks utilize the pass@k metric, which measures
the likelihood of the model generating a completion that passes all of the tests in k tries; we
also adopt this metric in our evaluation (§5.1). However, these benchmarks are limited to
the evaluation of a model’s ability to generate a single function from a natural language
description and do not assess code editing capabilities. HumanEvalPack (Muennighoff
et al., 2023) is a benchmark designed for evaluating LLMs across various single-function
code generation tasks, such as synthesis, code explanation, and bug fixing. Specifically,
HumanEvalFix, a bug-fixing variant of HumanEvalPack, is extensively used for assessing
the models’ capabilities in code refinement (Moon et al., 2023; Muennighoff et al., 2023).
However, the instruction is fixed for every problem. SWE-Bench (Jimenez et al., 2023)
evaluates LLMs across varied programming tasks including planning, retrieval, and code
editing. Our work concentrates specifically on code editing tasks, aiming to more precisely
guide model development. Unlike SWE-Bench, which sources its problems from GitHub
PRs and issues, our benchmark is handcrafted, reducing contamination risks as seen with
models like StarCoder and StarCoder2, which are trained extensively on GitHub data (Li
et al., 2023b; Lozhkov et al., 2024).

Code Editing Using Large Language Models. Previous studies on code editing with LLMs
have predominantly focused on bug fixing (Zhang et al., 2023; Moon et al., 2023; Shinn et al.,
2023; Chen et al., 2023; Olausson et al., 2023; Jin et al., 2023; Joshi et al., 2023; Wei et al.,
2023), a specific subset of code editing; fill-in-the-middle code completion (Bavarian et al.,
2022; Fried et al., 2023; Yee & Guha, 2023; Roziere et al., 2023; Guo et al., 2024), an inference
strategy that requires specific insert locations; and intrinsic code editing (Li et al., 2023a;
Gupta et al., 2023), which involves editing code without a specified instruction, exerting
the model’s ability to intrinsically ascertain the desired code changes. Recently, LLMs have
progressed in code editing guided by natural language without specific edit locations (Hu
et al., 2023; Li et al., 2023b; Muennighoff et al., 2023). However, this advancement lacks
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CanItEdit Dataset Statistics
Total Tasks 105 (35/35/35)
Total Problems 210 (70/70/70)

Topics
Data Structures & Algorithms 39
Language Processing 21
Mathematics 25
Data Science 10
Miscellaneous 10
Problems With Library Usage 22
Code Segment Mean ± Std. Dev.
Mean Lines (Before|After) 42.5 ± 33.9 | 49.8 ± 36.6
Levenshtein Distance 302.1 ± 339.6
Combined Mean Lines 92.3 ± 69.9
Combined Mean Tokens 865.3 ± 639.7
Combined Max Tokens 3,583
Instruction Mean ± Std. Dev.
Mean Tokens (Descriptive|Lazy) 81.7 ± 50.4 | 35.6 ± 30.6

Table 1: Dataset statistics for CANITEDIT.

benchmark evaluations to effectively measure the models’ code editing skills. Notably,
StarCoder (Li et al., 2023b), the first LLM trained on an extensive dataset of commits using
the format <before><commit message><after>, we have shown enhanced code editing
capabilities (§5). Before this study, StarCoder’s practical code editing performance had
not been assessed. StarCoder2 has replaced commits with pull requests and issues, which
typically include more natural language (Lozhkov et al., 2024). The recent introduction of
InstructCoder (Hu et al., 2023), a model explicitly trained and evaluated for code editing,
marks a significant step towards code editing with LLMs. However, its evaluation involved
GPT-4-generated (OpenAI, 2023b) and human-provided labels, which raises issues regarding
reproducibility and comparability in future research. Moreover, the model has not been
publicly released, prohibiting us from evaluating it on our benchmark.

3 The CANITEDIT Dataset

Benchmark Overview CANITEDIT is a dataset comprising 105 meticulously constructed
Python code editing challenges. Each problem includes the input code segment (before), the
expected code segment (after), the two types of natural language instructions (descriptive
and lazy), and a hidden test suite. These challenges span a broad spectrum of computer
science domains, such as data structures, algorithms, mathematics, language processing, and
game programming, requiring knowledge of popular external Python libraries like NumPy,
Pandas, PyTorch, and others. Table 1 presents general dataset statistics for CANITEDIT.

Following Swanson (1976) and follow-up work (Levin & Yehudai, 2017), we classify code
editing tasks into three distinct categories based on their primary goal: a corrective edit fixes
errors, a perfective edit enhances existing features, and an adaptive edit meets new require-
ments. We have 35 problems per category for an even distribution across the different types
of code changes. The dual instruction formats test the models’ ability to execute tasks based
on the provided context: descriptive instructions provide comprehensive details for explicit
guidance, while lazy instructions offer minimal direction, challenging the model to infer
the required actions. Both instructions should lead to an equivalent after segment. Descrip-
tive instructions serve to replicate situations where users provide specific specifications or
another model outlines a plan. In contrast, lazy instructions resemble typical user queries
for LLMs in code generation. As each problem has two distinct instructions, the dataset
effectively contains 210 problems. We showcase examples from CANITEDIT in Appendix C.
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Dataset Statistics
EditPackFT Commits2023FT

Total Commits 22,602 24,129
Unique Initial Verbs 184 199

Code Segments (Mean ± Std. Dev.)
Lines of Code 29.2 ± 13.7 119.3 ± 75.9
Levenshtein Distance 197.1 ± 260.6 406.6 ± 631.2

Commit Messages (Mean ± Std. Dev.)
Tokens 10.1 ± 4.6 23.1 ± 35.2

Table 2: Training dataset statistics for EditPackFT and Commits2023FT

Dataset Creation To manually construct CANITEDIT, we assembled a team of eight ex-
perienced Python programmers, each with different domain expertise, and appointed one
as the lead. Our objective was to fill each change category with 35 problems, with 105
problems total. Before starting, we provided the team with verbal and written guidance,
a standard template, and an example problem. They were instructed to begin by writing
a brief description of the problem and the applied changes for review and refinement by
the lead. Next, they were tasked to write the ’before’ code segment and hidden test suite,
followed by the ’after’ code segment, along with the instructions. The lead initially reviewed
all problems in development and they were additionally reviewed by the entire team in
weekly meetings. Upon completion of a problem, the lead generated sample completions to
ensure that the failures and successes were reasonable and consistent with the problem’s
intent.

The team also dedicated significant effort to developing comprehensive test suites for each
problem, which incorporated a variety of testing techniques such as unit tests, property-
based testing, mocking, fuzzing, and integration tests. These suites were designed to
rigorously evaluate whether the ’after’ segment met the problem requirements while ensur-
ing the ’before’ code did not. To confirm the completeness and correctness of the test suites,
we created an automated verification pipeline that ensured 100% line coverage and that the
suite passed all tests with the ‘after’ code while failing at least one with the ‘before’ code.
The team also manually reviewed the tests to ensure correctness and completeness.

4 Fine-Tuning

We describe our approach to fine-tuning Code LLMs for code editing tasks, focusing on
the DeepSeekCoder-Base family (Guo et al., 2024), a variant of CodeLlama (Roziere et al.,
2023) trained on 2 trillion tokens of GitHub code and natural language, using StarCoder’s
filtering rules (Li et al., 2023b). These models, top-performing in code generation and
open-access under a permissive license, show robust performance on CANITEDIT without
specific training for instructional tasks (§5).

For our ablation studies, we focus on the model with 6.7 billion parameters, which offers
an ideal balance between size and performance. This allows us to extrapolate results to
larger models with more parameters without the need for extensive training. Following
the most performant training strategy identified, we also fine-tune the 1.3b and 33b models
to evaluate the impact of model size on code editing performance. Our fine-tuned models
are referred to as EDITCODER. These models have been full-parameter fine-tuned by
calculating the loss on only the ‘after’ code segment. Appendix B provides further details
and experiments on the training process.

We experiment with two training datasets we gathered: EditPackFT and Commits2023FT,
which we describe below. Table 2 presents the statistics for these datasets.

EditPackFT We created the EditPackFT dataset by further filtering the Python split of
the CommitPackFT dataset (Muennighoff et al., 2023). CommitPack is an extensive dataset
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Figure 2: The distribution of the number of lines in the ‘before’ and ‘after’ code segments in
the EditPackFT and Commits2023FT datasets. The 99th percentile is removed for clarity.

comprising 4TB of permissively licensed commits from a 2016 GitHub snapshot across
various programming languages. CommitPackFT is a subset of CommitPack, filtered to be
amenable for instruction-tuning Code LLMs. The primary criterion for CommitPackFT’s
selection involved retaining commits whose messages begin with an imperative verb,
mirroring the typical structure of natural language instructions. We apply a series of
additional filtering steps, which make the dataset more suitable for code editing. We remove
any item that pass any of the following predicates:

1. The presence of an empty ‘before’ or ‘after’ code segment, disregarding whitespace.
2. No change detected in the ‘before’ and ‘after’ code segments.
3. The inclusion of the words TODO, FIXME, or BUG in the ‘after’ code segment,

which signals an incomplete commit.
4. Incorrect parsing of the ‘after’ code using the Python ast module.

Originally, the dataset contained 56,025 commits, and after applying the filtering steps,
we are left with 22,602. As shown by Figure 2a and Table 2, the mean number of lines
in the ‘before’ and ‘after’ code segments is 29.2. The mean Levenshtein distance between
the ‘before’ and ‘after’ code segments is 197.1 characters, indicating that the changes are
relatively small. We also analyze the distribution of the commit message lengths, and find
that the mean token count is 10.1, which is quite low. We further analyzed the original
CommitPackFT dataset to ensure that these findings weren’t artifacts of our filtering strategy:
the full dataset has similar statistics.
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Figure 3: Sunburst plot of the top 20
most frequent initial verbs, with their
corresponding top 10 root nouns,
in the commit messages of Com-
mits2023FT.

Commits2023 To address the limitations of Edit-
PackFT, we developed the Commits2023FT dataset.
This dataset is filtered from 416,792 Python file
changes gathered from commits in permissively li-
censed GitHub repositories. We name the unfiltered
dataset Commits2023. Our objective is to create a
dataset akin to CommitPackFT, but with more recent
data and a more diverse example length distribution.
We employed the same filters on this dataset as used
for EditPackFT, and also applied the initial filters
from CommitPackFT, which includes only commits
with messages that start with an imperative verb
followed by at least a noun. Additionally, we only
retain one file from multi-file commits to avoid ex-
act duplicate commit messages in our dataset. After
this filtering process, we obtain a dataset compris-
ing 24,129 Python file changes. Figure 2b presents
a broader distribution of the number of lines in the
‘before’ and ‘after’ code segments, with an average of
119.3. We also observe a much larger change distribution, with a mean Levenshtein distance
of 406.6, signaling that this is not only a dataset with larger code segments, but also contains
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Model Descriptive Lazy
Name Size pass@1 ExcessCode pass@1 ExcessCode

Closed Models
GPT-4 — 63.33 0.15 ± 0.09 51.95 0.14 ± 0.10

GPT-3.5-Turbo — 48.14 0.47 ± 0.34 42.71 0.00 ± 0.00
Open Models

CodeLlama-Instruct 70b 45.05 0.28 ± 0.15 37.52 0.02 ± 0.02
Mixtral-Instruct 8x7b 30.10 0.40 ± 0.16 24.90 0.01 ± 0.01

EDITCODER 33b 55.90 0.33 ± 0.21 42.33 0.27 ± 0.24
DeepSeekCoder-Instruct 33b 49.78 0.36 ± 0.24 38.94 0.51 ± 0.34

DeepSeekCoder-Base 33b 47.71 0.53 ± 0.24 34.71 0.62 ± 0.41
CodeLlama-Instruct 34b 30.63 0.33 ± 0.21 24.15 0.18 ± 0.14

StarCoder2 15b 41.95 0.36 ± 0.20 31.48 0.04 ± 0.04
StarCoder 15b 37.10 0.56 ± 0.28 27.62 0.42 ± 0.34
OctoCoder 15b 34.43 0.12 ± 0.07 25.95 0.07 ± 0.07

CodeLlama-Instruct 13b 26.90 0.90 ± 0.68 16.89 0.42 ± 0.41
EDITCODER 6.7b 48.33 0.36 ± 0.17 39.29 0.32 ± 0.25

DeepSeekCoder-Instruct 6.7b 41.03 0.13 ± 0.06 31.65 0.22 ± 0.12
DeepSeekCoder-Base 6.7b 32.62 1.01 ± 0.42 27.76 1.25 ± 0.98
CodeLlama-Instruct 7b 32.83 0.31 ± 0.15 23.49 0.36 ± 0.26

EDITCODER 1.3b 26.67 0.14 ± 0.09 21.43 0.20 ± 0.12
DeepSeekCoder-Instruct 1.3b 26.22 0.32 ± 0.18 17.27 0.32 ± 0.13

DeepSeekCoder-Base 1.3b 17.90 0.69 ± 0.42 11.76 2.79 ± 2.29

Table 3: Evaluation results of close and open-access models on CANITEDIT. We report the
pass@1 and ExcessCode metrics for both the descriptive and lazy prompts as well as the size
of the model if available.

more varied changes. Figure 3 illustrates a sunburst plot of the most frequent initial verbs in
the commit messages of Commits2023FT, along with their corresponding root nouns. This
set of verbs is slightly more varied than those in EditPackFT, featuring 199 unique verbs
in comparison to 184. Furthermore, the token count distribution of the commit messages
is twice as high and much more varied than that of EditPackFT, with a mean of 23.1 and a
standard deviation of 35.2.

Ablation Datasets For ablation analysis, we generated two additional datasets: Com-
mits2023Raw25k and Commits2023FT+EditPackFT. Commits2023Raw25k consists of a
random selection of 25,000 commits from Commits2023. We use this dataset to assess the
impact of the filtering process on the final dataset. Commits2023FT+EditPackFT represents
the combined dataset of Commits2023FT and EditPackFT. We find that the combination of
Commits2023FT and EditPackFT yields the best results by a significant margin (§5.2), and
thus we train our final models on this dataset. We believe that these results are due to the
increased amount of data and the expanded length distributions.

5 Evaluation

In this section, we evaluate the performance of various open and closed models on the
CANITEDIT benchmark, as well our fine-tuned models.

Evaluation Tools and Hyperparameters We run the open-access models using Hugging-
Face Transformers (Wolf et al., 2020) and vLLM (Kwon et al., 2023). We use the following
hyperparameters for all inference experiments: 2048 maximum new tokens, temperature
0.2, and top-p sampling cutoff of 0.95. Following Cassano et al. (2023b), we sample 20
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completions for each problem. We run all tests in a Docker container to mitigate the risk of
malicious code execution.

Models Evaluated We evaluate several state-of-the-art models of varying sizes, fine-tuning
some of them to build EDITCODER. We group the models into two categories: open, models
which we have access to their weights, and closed, models which we do not. We prompt
each model with their recommended prompt template. The specific templates used appear
in Appendix A.6. The full list of models and their sizes appears in Table 3.

5.1 Evaluation Metrics

We employed two metrics to assess model performance: pass@k assesses functional correct-
ness, and ExcessCode assesses conciseness and precision of code edits.

• pass@k is the likelihood that at least one successful edit was made from k attempts,
as assessed by the test suite. In this section, we show results only for pass@1, and
evaluation results for pass@10 and pass@100 with higher temperatures can be found
in Appendix A.2.

• ExcessCode evaluates the presence of unnecessary code changes, as indicated by
the fraction of changed lines not covered by the test suite. We calculate this metric
by averaging the mean line coverage for passing completions across all problems,
omitting those with no successful completions. The Python code used to calculate
this metric is found at Appendix A.1. We additionally report the standard error of
the mean for this metric.

5.2 Results with Existing Models

We draw several conclusions from the full results in Table 3.

Closed source models outperform open source models. Our evaluation indicates a signif-
icant performance disparity between open and closed models. GPT-4, despite not being
specifically trained on code-related tasks, surpasses DeepSeekCoder-Instruct 33b – the
leading open source model – by an average of 13% in pass@1 for both descriptive and lazy
tasks. DeepSeekCoder-Instruct stands out as the only open model exceeding any closed
model’s performance, surpassing GPT-3.5-Turbo for descriptive prompts.

DeepSeekCoder-Instruct utilizes an undisclosed instruction-tuning dataset, therefore di-
rect comparisons with other open models may not be entirely fair. In contrast, Mixtral-
Instruct (Jiang et al., 2024), comparable to OpenAI models in its general instruction-following
training focus, significantly lags in performance against both closed models and open mod-
els specialized in code generation tasks. Lastly, CodeLlama-Instruct-70b, ranked second in
instruction-following capabilities, was developed using a dataset of examples generated
by Llama 2 70b with a larger focus on code generation tasks. This may explain its superior
performance compared to Mixtral-Instruct.

Descriptive prompts yield better performance than lazy prompts. Descriptive prompts
result in a 8.68 absolute increase on average in pass@1 compared to lazy prompts, which
may be the result of more detailed information and additional pointers in descriptive
problems. Lazy instructions generally lead to lower ExcessCode for larger models. This may
be indicative of lazy instructions introducing less noise in the task, as there are less tokens
to attend to in the prompt given.

Larger models perform better than smaller models. Model size correlates positively
with pass@1, and negatively with ExcessCode, indicating that larger models are more adept
at precise edits to code. This pattern is most clearly seen in the evaluation results of
DeepSeekCoder-Base, StarCoderBase, and StarCoder2, where a steady increase in perfor-
mance is seen along with an increase in model size (Appendix A.5).

Models pre-trained on commits are better at code editing. Among open models, StarCoder
is pre-trained on GitHub commits, while StarCoder2 focuses on GitHub issues. StarCoder
outperforms similar-sized DeepSeek and CodeLlama models in our benchmark, despite
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their superior code generation capabilities. OctoCoder, a StarCoder-based model fine-tuned
on instructions (Muennighoff et al., 2023), shows lower pass@1 performance, suggesting
instruction fine-tuning on commit-based models may reduce code editing efficacy. Con-
versely, StarCoder2, exchanging commits with issues in its training, improves in editing
tasks with larger models (Appendix A.5). This may be attributed to extended training and
modern architecture rather than data source shift.

5.3 Results after Fine-Tuning on Commits

Training Dataset Metrics
Name #Tokens #Items pass@1 ExcessCode

Commits2023FT+EditPackFT 74M 46,274 43.81 0.34 ± 0.15
Commits2023FT 62M 24,129 41.88 0.33 ± 0.17

Commits2023Raw25k 62M 25,000 38.86 0.3 ± 0.12
EditPackFT 12M 22,602 41.6 0.26 ± 0.14

Table 4: Ablation results of training DeepSeekCoder-6.7b-Base on different datasets and
evaluating on CANITEDIT. We show the total number of tokens and items in each dataset,
as well as the pass@1 and ExcessCode metrics for both the descriptive and lazy prompts
aggregated across all problems. The reported sizes of the datasets are after deduplication.

In addition to evaluating existing open models, we also fine-tuned pre-trained DeepSeek
models (§4) to build EDITCODER, which we now evaluate.

Optimal Dataset: Commits2023FT+EditPackFT. In finding the best training dataset for
DeepSeekCoder-6.7b-Base, the base model for EDITCODER, various ablation datasets were
tested. Results in Table 4 show Commits2023FT+EditPackFT is the top performer for both
descriptive and lazy instructions. The dataset’s larger size and diverse data types, including
varied commits, edits, and instructions, likely contribute to its superior performance.

Fine-tuning on open commits can significantly improve code editing performance. EDIT-
CODER-33b surpasses all open models in pass@1 for both descriptive and lazy instructions
types, showing an overall 10.7% increase in pass@1 and a notable decrease in ExcessCode
compared to its base model, DeepSeekCoder-Base-33b. Additionally, we see a substantial
increase in pass@1 for every iteration of EDITCODER over its corresponding base model,
with the largest improvement being a 45.1% increase at 6.7b.

Both EDITCODER-33b and EDITCODER-6.7b outperform GPT-3.5-Turbo in pass@1 for de-
scriptive instructions, with EDITCODER-33b also matching GPT-3.5-Turbo in for lazy ones.
In higher temperature scenarios (Appendix A.2), EDITCODER-33b beats GPT-3.5-Turbo in
both instruction types for pass@10 and pass@100, and even surpasses GPT-4 in pass@100 for
descriptive instructions. Analysis in Appendix A.3 shows EDITCODER excels in corrective
changes but is less effective in perfective changes. Further analysis in Appendix A.4 shows
that EDITCODER-33b outperforms all models, including GPT-4, in simple single-function
bug fixes, and retains synthesis capabilities. This demonstrates the effectiveness of targeted
fine-tuning on code editing datasets, addressing the distinct needs of instructional code
editing compared to general code generation.

6 Conclusion

We present CANITEDIT, a benchmark designed to assess the instructional code editing skills
of Code LLMs. It includes 105 hand-written code editing problems, each accompanied by
dual natural language instructions: a “lazy” instruction that a human may write, and a
“descriptive” instruction that may be generated by an agent revising code in a loop. Each
problem has a comprehensive test suite. We evaluate contemporary state-of-the-art Code
LLMs and reveal a significant gap between closed and open models. We also demonstrate
that fine-tuning with a custom dataset and training methodology can significantly improve
code editing capabilities across various model sizes. Our work provides a foundation
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for evaluating future enhancements in instructional code editing for Code LLMs, offering
valuable tools and insights for AI-based software development research and practice.

Limitations We evaluated LLMs in reproducing the entire ‘after’ code segment, which may
not be the most token-efficient method. A potentially more efficient strategy would involve
generating a list of specific changes to be applied to the ‘before’ code segment. Furthermore,
our study does not explore varying prompt formats. Instead, we have adopted a format
consistent with that used by other models (Li et al., 2023b). Another limitation is the size of
our final training dataset, which is relatively modest. We have not investigated the potential
benefits of utilizing larger datasets, which could notably enhance performance, particularly
with larger models. Our work only targets Python. Similar results may be possible for other
high-resource programming languages, but low-resource languages may require additional
effort (Cassano et al., 2023a). We identify these areas as opportunities for future work.
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Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Ivan Radiček, and Gust
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Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith
Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Rich árd Nagyfi, et al.
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Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. StarCoder: May the
source be with you! arXiv preprint arXiv:2305.06161, 2023b.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated
by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code
Generation. arXiv preprint arXiv:2305.01210, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max
Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry
Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu,
Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß,
Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas
Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone,
Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien
Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
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A Additional Evaluation Details

In this section, we provide several additional details about our evaluation. We provide the
following additional details:

1. A Python implementation for computing the ExcessCode metric in A.1.
2. Results of our evaluation at higher sampling parameters in A.2.
3. A deeper analysis of our results per change type in A.3.
4. An evaluation of EDITCODER on HumanEvalPack in A.4.
5. A deeper comparison of the first and second versions of StarCoder in A.5.
6. Each prompt format used in our evaluation in A.6.

OpenAI Model Versions For our evaluation we use the following versions of the OpenAI
models, which at the time of writing were the latest stable versions:

• GPT-4: gpt-4-0613
• GPT-3.5-Turbo: gpt-3.5-turbo-0125

A.1 Computing ExcessCode

1 def excess_code(before: str , after: str , lines_missing: int):
2 """
3 Compute the ExcessCode score for a single code edit

completion.
4 Args:
5 before: The original code segment.
6 after: The modified code segment.
7 lines_missing: The number of lines with missing code

coverage.
8 Returns:
9 The computed ExcessCode score.

10 """
11 import difflib
12 differ = difflib.Differ ()
13 before_lines = before.splitlines ()
14 after_lines = after.splitlines ()
15 lines_changed = len(differ.compare(before_lines ,

after_lines))
16 return lines_missing / lines_changed

Listing 1: A Python implementation for computing the ExcessCode metric

We provide a simple Python implementation for computing the ExcessCode metric in List-
ing 1. The function takes in as input the original code segment, the modified code segment,
and the number of lines with missing code coverage. The lines with missing code coverage
are computed using a code coverage tool, in our case, Coverage.py (Batchelder & Contribu-
tors to Coverage.py). For Coverage.py, the number of lines with missing code coverage can
be obtained by running the command coverage report -m.

A.2 Results At Higher Sampling Parameters

In this section, we evaluate the performance of various models under higher sampling
parameters compared to those used in our main evaluation (§5).

Standard Sampling Parameters In §5, we assessed several models on CANITEDIT using
standard parameters: temperature of 0.2, top-p of 0.95, and 20 samples. These parameters,
often used in code generation tasks (Chen et al., 2021; Cassano et al., 2023b;a; Muennighoff
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Model Metrics
Name Size pass@1 pass@10 pass@100 ExcessCode

Descriptive
GPT-4 — 63.67 73.67 80.00 0.18 ± 0.09

GPT-3.5-Turbo — 47.88 61.67 71.43 0.33 ± 0.21
EDITCODER 33b 54.36 73.15 81.90 0.81 ± 0.38

CodeLlama-Instruct 34b 28.50 52.00 64.76 0.38 ± 0.16
StarCoder2 15b 40.06 62.12 71.43 0.47 ± 0.19
StarCoder 15b 33.31 59.80 70.48 0.76 ± 0.25

CodeLlama-Instruct 13b 25.01 50.04 62.86 0.47 ± 0.29
EDITCODER 6.7b 46.31 60.24 70.48 0.42 ± 0.23

CodeLlama-Instruct 7b 29.93 52.86 65.71 0.76 ± 0.39
EDITCODER 1.3b 26.29 40.22 47.62 0.50 ± 0.23

Lazy
GPT-4 — 52.55 64.56 71.43 0.12 ± 0.09

GPT-3.5-Turbo — 40.93 53.33 60.95 0.29 ± 0.27
EDITCODER 33b 40.34 58.63 68.57 0.46 ± 0.20

CodeLlama-Instruct 34b 21.10 42.69 56.19 0.19 ± 0.08
StarCoder2 15b 30.23 48.82 59.05 0.17 ± 0.07
StarCoder 15b 24.75 50.23 65.71 0.68 ± 0.25

CodeLlama-Instruct 13b 16.67 38.52 58.10 0.67 ± 0.44
EDITCODER 6.7b 37.74 51.16 57.14 0.33 ± 0.15

CodeLlama-Instruct 7b 20.85 41.10 54.29 0.11 ± 0.06
EDITCODER 1.3b 20.20 32.70 39.05 1.47 ± 1.20

Table 5: Evaluation results of models on CANITEDIT at higher sampling parameters. We
report the pass@1, pass@10, and pass@100 metrics for both the descriptive and lazy prompts,
as well as the ExcessCode metric. The size of the model is reported if available.

et al., 2023; Li et al., 2023b; Lozhkov et al., 2024), balance the selection of higher probability
tokens while allowing for sampling of lower probability tokens at conservative levels,
addressing surface form competition (Holtzman et al., 2021), making it typically more
effective than greedy decoding (Chen et al., 2021).

Higher Sampling Parameters For this evaluation, we increased the sampling parameters
to assess the models’ robustness under more diverse generation conditions. Following
Chen et al. (2021), we adopted a temperature of 0.8, top−p of 0.9, and 100 samples. These
aggressive parameters allow the model to explore a wider range of possibilities, useful
when multiple completion attempts are possible. Due to the higher computational costs, we
limited our evaluation to a subset of models compared to the main evaluation.

Metrics For this evaluation, we expand our metrics to include pass@10 and pass@100,
alongside the standard pass@1 and ExcessCode. pass@10 and pass@100 offer deeper insights
into model performance by evaluating the success rate across the top 10 and 100 completions,
respectively. These metrics are crucial for understanding how models perform in scenarios
that permit multiple attempts, such as when users are provided with a range of completions
to select from or when an external verifier is used to determine the best completion.

A.2.1 Results

The results of our evaluation at higher sampling parameters are shown in Table 5. We draw
several conclusions from the results.

pass@1 decreases for open models. Closed models maintain consistent pass@1 performance
under higher sampling parameters. In contrast, open source models generally exhibit a
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decline, showing a 2-3% reduction in pass@1 performance compared to the main evaluation
(Table 3).

Multiple trials benefit open source models. Open source models significantly improve with
multiple trials, showing larger gains in pass@10 and pass@100 compared to closed models,
which also improve but to a lesser degree. Specifically, EDITCODER-33b outperforms all
models, including GPT-4, in pass@100 for descriptive instructions and matches closely in
pass@10. However, EDITCODER-33b lags behind GPT-4 in lazy instruction scenarios across
all metrics and tends to generate more excess code for both prompt types. We expect that
the performance of EDITCODER on lazy instructions will improve with more data and larger
pre-trained models.

Lazy instructions benefit more than descriptive instructions from multiple trials. The
performance disparity between descriptive and lazy instructions persists, even under higher
sampling parameters and multiple trials, as seen in pass@10 and pass@100. Despite this, the
rate of improvement from multiple trials is greater for lazy instructions, with increases of
57.76% in pass@10 and 22.57% in pass@100, surpassing the gains for descriptive instructions,
which are 48.18% and 17.23% respectively. This indicates a more pronounced benefit from
multiple attempts in scenarios involving less structured prompts.

Significant increase in ExcessCode. The average ExcessCode metrics for both descriptive and
lazy instructions, at 0.507 and 0.449 respectively, have increased from the main evaluation’s
averages of 0.392 and 0.235. 1 This is expected, as higher sampling parameters tend to yield
a broader range of completions, consequently resulting in an increase in superfluous code.

A.3 Results Per Change Type

Model Corrective Adaptive Perfective
Name Size p@1 ExcessCode p@1 ExcessCode p@1 ExcessCode

Closed Models
GPT-4 — 62.21 0.05 ± 0.03 57.29 0.31 ± 0.19 53.43 0.08 ± 0.06

GPT-3.5-Turbo — 47.93 0.00 ± 0.00 42.29 0.17 ± 0.12 46.07 0.60 ± 0.54
Open Models

EDITCODER 33b 56.86 0.02 ± 0.02 51.21 0.77 ± 0.42 39.29 0.05 ± 0.04
EDITCODER 6.7b 48.64 0.00 ± 0.00 42.71 0.43 ± 0.21 40.07 0.66 ± 0.42
EDITCODER 1.3b 26.36 0.11 ± 0.10 23.21 0.14 ± 0.10 22.57 0.26 ± 0.18

Table 6: Results of OpenAI models and EDITCODER on CANITEDIT per change type. We
report the pass@1 and ExcessCode metrics for each change type, as well as the size of the
model if available. Results for lazy and descriptive prompts are aggregated across all
problems. pass@1 is abbreviated to p@1.

In this section we analyze the results of EDITCODER against the OpenAI models on CAN-
ITEDIT per change type. We hope to gain insights into the strengths and weaknesses of
these models for different types of code changes. Table 6 shows the results of our analysis,
we aggregate the results for lazy and descriptive prompts across all problems, this is done
for conciseness and to minimize the noise of our results, as each pass@1 and ExcessCode
metric is calculated across 70 problems per change type, instead of 35. We utilize the same
sampling parameters as in our main evaluation. Our key findings include:

• GPT-4 outperforms other models in functional correctness across all types of
changes.

• Corrective changes typically incur minimal excess code, with some models achiev-
ing perfect scores in this area. Adaptive changes, intuitively, tend to introduce the
most excess code.

1These values are calculated by averaging over the results from the models in this table, and not
the entire set of models in the main evaluation.
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• Our EDITCODER-33b model surpasses GPT-3.5-Turbo in both corrective and adap-
tive changes, while EDITCODER-6.7b shows comparable performance to GPT-3.5-
Turbo in these categories. However, for perfective changes, both EDITCODER-33b
and EDITCODER-6.7b underperform compared to GPT-3.5-Turbo. This suggests a
potential improvement in training data for perfective changes. As demonstrated
in Figure 3, verbs associated with perfective changes, such as refactor or improve,
appear less frequently than those related to corrective or adaptive changes, such
as fix or add, respectively. Artificially balancing the dataset with more examples of
perfective changes could potentially enhance EDITCODER’s performance. We leave
this as an area for future work.

• According to our dataset, the most challenging changes are perfective, followed by
adaptive, with corrective being the simplest.

A.4 Evaluation on HumanEvalPack

Model pass@1
Name Size Fix Synthesize
GPT-4 — 47.0‡ 86.6‡

EDITCODER 33b 53.0 63.5
DeepSeekCoder-Instruct 33b 47.5† 79.2

CodeLlama-Instruct 34b 36.5† 43.8
StarCoder2 15b 48.6† 51.6

StarCoderBase 15b 25.6† 33.6‡

OctoCoder 15b 30.4† 35.1‡

CodeLlama-Instruct 13b 19.4† 23.7
EDITCODER 6.7b 46.6 52.9

DeepSeekCoder-Instruct 6.7b 44.9† 76.2
EDITCODER 1.3b 24.3 28.3

DeepSeekCoder-Instruct 1.3b 9.1 62.4

Table 7: Results of models on the Python subset of HumanEvalFix and HumanEvalSyn-
thesize. † indicates that the result originates from Lozhkov et al. (2024), while ‡ indicates
that the result comes from Muennighoff et al. (2023). The rest of the results are from our
evaluation following the same methodology as in Muennighoff et al. (2023).

To draw similarities and differences between CANITEDIT and HumanEvalPack, in this sec-
tion we evaluate models on the Python subset of HumanEvalFix and HumanEvalSynthesize.
Results are available in Table 7.

Benchmark Overview HumanEvalPack is a benchmark comprised of 164 single-function
problems aimed at evaluating both code generation and code editing. The problems are
designed to not require domain-specific knowledge or familiarity with popular external
libraries. HumanEvalFix contains only corrective code changes, while HumanEvalSynthe-
size purely focuses on code generation, tasking the model to generate a function from its
signature and docstring.

Results In this benchmark, EDITCODER-33b outperforms even GPT-4 in fixing bugs,
while maintaining competitive synthesis capabilities against models trained on general
instructional data, with EDITCODER-6.7b outperforming even larger models like CodeLlama-
Instruct-34b. Additionally, we find a large disparity between the performance of models
on HumanEvalFix and HumanEvalSynthesize for DeepSeekCoder-Instruct-1.3b, which
performs significantly worse in fixing bugs than in synthesizing functions. These results
demonstrate that HumanEvalPack and CANITEDIT complement each other: the former
focuses on single-function algorithmic and puzzle-like problems, while the latter emphasizes
code editing tasks requiring broader knowledge of software engineering concepts in a wide
range of domains.
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Example Problems To illustrate typical problems in HumanEvalPack, we selected exam-
ples from HumanEvalSynthesize and HumanEvalFix. Listing 2 presents a HumanEval-
Synthesize problem where the model must complete a function based on its signature and
docstring. Listing 3 demonstrates an incorrect function implementation from HumanEval-
Fix along with it’s ground truth unit test suite, where the model’s task is to correct the
implementation. Unlike in CANITEDIT, the model must infer the correct implementation
solely from the faulty code and the test suite, without explicit instructions. One could argue
that this falls under intrinsic code editing, rather than instructional code editing, since the
model is not given any instructions about the intent of the function, making this benchmark
more suitable for evaluating works such as Li et al. (2023a) and Gupta et al. (2023).

1 Write a Python function ‘has_close_elements(numbers: List[float],
2 threshold: float) -> bool ‘ to solve the following problem:
3 Check if in given list of numbers , are any two numbers closer to
4 each other than given threshold.
5 >>> has_close_elements ([1.0, 2.0, 3.0], 0.5)
6 False
7 >>> has_close_elements ([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
8 True

Listing 2: The prompt of a problem in HumanEvalSynthesize. The task for the model is to
complete the function.

1 def unique_digits(x):
2 odd_digit_elements = []
3 for j, i in enumerate(x):
4 if all (int(c) % 2 == 1 for c in str(i)):
5 odd_digit_elements.append(i)
6 odd_digit_elements.append(j)
7 return sorted(odd_digit_elements)
8
9 def check(unique_digits):

10 assert unique_digits ([15, 33, 1422, 1]) == [1, 15, 33]
11 assert unique_digits ([152, 323, 1422, 10]) == []
12 assert unique_digits ([12345 , 2033, 111, 151]) == [111, 151]
13 assert unique_digits ([135, 103, 31]) == [31, 135]
14
15 check(unique_digits)
16
17 Fix bugs in unique_digits.

Listing 3: The prompt of a problem in HumanEvalFix. The implementation is incorrect, and
the task for the model is to re-implement the function correctly.

A.5 Comparison of StarCoder Models

Model Descriptive Lazy
Name Size pass@1 ExcessCode pass@1 ExcessCode

StarCoder2 15b 41.95 0.36 ± 0.20 31.48 0.04 ± 0.04
StarCoder 15b 37.10 0.56 ± 0.28 27.62 0.42 ± 0.34

StarCoderBase 15b 35.33 1.55 ± 0.89 27.05 0.85 ± 0.55
StarCoderBase 7b 32.90 0.43 ± 0.17 21.95 0.49 ± 0.37

StarCoder2 7b 25.10 1.47 ± 0.78 13.76 1.81 ± 1.22
StarCoder2 3b 15.95 0.91 ± 0.39 13.33 1.09 ± 0.98

StarCoderBase 3b 14.81 1.22 ± 0.52 9.90 1.17 ± 0.76
StarCoderBase 1b 4.90 0.99 ± 0.85 5.48 0.00 ± 0.00

Table 8: Evaluation results of StarCoder models on CANITEDIT.
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StarCoder Models The first version of StarCoder models were pre-trained on several
gigabytes of GitHub commits, as discussed in (Li et al., 2023b). In contrast, the second
version, StarCoder2, did not include commit data in its training process. However, it was
trained on GitHub issues, which provides it instruction following capabilities. Issue data
encompasses a broader scope than commits, including discussions, bug reports, and feature
requests. With prompt-engineering, StarCoder2 models can be used for code editing tasks,
as demonstrated in Lozhkov et al. (2024). Furthermore, in most benchmarks evaluated
in Lozhkov et al. (2024), StarCoder2 surpasses its previous version, StarCoderBase, in code
generation tasks.

The original StarCoder model, StarCoderBase-15b, was additionally trained on Python code
from GitHub. StarCoderBase models are available in four sizes: 15b, 7b, 3b, and 1b. On the
other hand, StarCoder2 has not undergone further training on additional Python code and
is available in three sizes: 15b, 7b, and 3b.

Evaluation We evaluate all sizes of StarCoder and StarCoder2 models on CANITEDIT
and present the results in Table 8. We find that StarCoder2 outperforms StarCoder in the
15b and 3b sizes, but not in the 7b size, where StarCoderBase-7b significantly outperforms
StarCoder2-7b. Additionally, for the 7b and 3b sizes, StarCoder2 models tend to generate
more excess code than StarCoderBase models. We attribute the performance improvements
in StarCoder2 to the broader training data and architectural enhancements, as discussed
in Lozhkov et al. (2024), rather than to the superiority of issue data over commit data for
code editing tasks. However, we also believe that for utilizing StarCoder2 models directly
for code editing tasks, the issue prompt format is a viable alternative to the commit format
previously utilized by StarCoderBase models. We provide the prompt format we utilized
for StarCoder2 models in Figure 5.

A.6 Prompt Templates Used in Evaluation

We evaluate all of our models on CANITEDIT using the same evaluation pipeline. However,
for each model, we may utilize different prompts to generate the completions. These
prompts are most aligned to how the model was trained, and are intended to maximize
the model’s performance on the task, while keeping the prompts as similar as possible
across models. Figure 4 shows the prompts used for each model. For a fair comparison,
we evaluate all models not trained on commits or explicit code editing tasks using a basic
1-shot prompt, showing the model how to add a sub function to a code segment with a add
function, and changing the variable names from a and b to x and y.

Furthermore, given the natural language characteristics of GitHub issue data, significant
prompt-engineering was required to facilitate code editing tasks for StarCoder2 models.
The specific prompt format used for StarCoder2 models is provided separately in Figure 5.
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<user>
You are PythonEditGPT. You will be
provided the original code snippet and
an instruction that specifies
the changes you need to make.
You will produce the changed code, based
on the original code and the instruction
given. Only produce the code, do not
include any additional prose.

## Code Before
‘‘‘py
def add(a, b):

return a + b
‘‘‘

## Instruction
Add a "sub" function that subtracts two
numbers. Also write docstrings for both
functions and change a,b to x,y.
<assistant>
## Code After
‘‘‘py
def add(x, y):

"""Adds two numbers."""
return x + y

def sub(x, y):
"""Subtracts two numbers."""
return x - y

‘‘‘
<user>
You are PythonEditGPT. You will be
provided the original code snippet and
an instruction that specifies
the changes you need to make.
You will produce the changed code, based
on the original code and the instruction
given. Only produce the code, do not
include any additional prose.

## Code Before
‘‘‘py
{before}
‘‘‘
## Instruction
{instruction}

(a) Conversation template utilized for all chat
models without a ‘system‘ prompt. This is the
prompt utilized for OctoCoder.

<system>
You are PythonEditGPT. You will be
provided the original code snippet and
an instruction that specifies
the changes you need to make.
You will produce the changed code, based
on the original code and the instruction
given. Only produce the code, do not
include any additional prose.
<user>
## Code Before
‘‘‘py
def add(a, b):

return a + b
‘‘‘

## Instruction
Add a "sub" function that subtracts two
numbers. Also write docstrings for both
functions and change a,b to x,y.
<assistant>
## Code After
‘‘‘py
def add(x, y):

"""Adds two numbers."""
return x + y

def sub(x, y):
"""Subtracts two numbers."""
return x - y

‘‘‘
<user>
## Code Before
‘‘‘py
{before}
‘‘‘
## Instruction
{instruction}

(b) Conversation template utilized for all chat
models with a ‘system‘ prompt. The prompt is
then adapted to the specific model chat format.
This is the prompt utilized for: GPT-4, GPT-3.5-
Turbo, CodeLlama-Instruct, and DeepSeekCoder-
Instruct models.

<commit_before>
{before}
<commit_msg>
{instruction}
<commit_after>

(c) Prompt utilized for StarCoder and StarCoder-
Base models of all sizes. StarCoder models are
trained on commits in this format (Li et al., 2023b).

## Code Before:
{before}
## Instruction:
{instruction}
## Code After:

(d) Prompt utilized for our fine-tuned EDITCODER
models. DeepSeekCoder-Base models use this
prompt with the add and sub 1-shot example.

Figure 4: Prompts for each model evaluated on CANITEDIT. The {before} identifier is
replaced with the ‘before’ code segment, and {instruction} is replaced with the instruction.
Text wrapped in <...> is used to represent special tokens that utilized by the models.
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<issue_start>username_0: I have a program in Python that I’d like to change.

Here is the code for the program:
‘‘‘py
def add(a, b):

return a + b
‘‘‘

The change I’d like to make is:
Add a "sub" function that subtracts two numbers.
Also write docstrings for both functions and change a,b to x,y.

Please someone help me. Can you also provide the full code with the change?
<issue_comment>username_1: Sure, no problem. I will be able to help.
I am an expert in editing Python code.

Here is the full code with the change:
‘‘‘py
def add(x, y):

\"\"\"Adds two numbers.\"\"\"
return x + y

def sub(x, y):
\"\"\"Subtracts two numbers.\"\"\"
return x - y

‘‘‘
Upvotes: 200<issue_comment>username_0: Thank you so much!
I have another program in Python that I’d like to change.

Here is the code for the program:
‘‘‘py
{before}
‘‘‘

The change I’d like to make is:
{instruction}

Please someone help me. Can you also provide the full code with the change?
Upvotes: 100<issue_comment>username_1: Sure, no problem. I will be able to help.
I am an expert in editing Python code.

Here is the full code with the change:
‘‘‘py
{after}
‘‘‘

Figure 5: Prompt utilized for StarCoder2 models. StarCoder2 models are trained on GitHub
issue data, which makes this prompt format amenable to code editing tasks (Lozhkov et al.,
2024).
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B Training Details

In this section we provide details on the training process for EDITCODER and ablation
results on the loss masking technique used in training.

B.1 Training Tools and Configuration

For training all of our EDITCODER models, we utilize a fine-tuning pipeline based on the
HuggingFace Transformers library (Wolf et al., 2020). Additionally, we utilize DeepSpeed
ZeRO 3 (Rajbhandari et al., 2020) to efficiently shard the model across multiple GPUs. Due
to memory constraints, we offload the optimizer to the CPU for the 33b model. We also use
FlashAttention 2 (Dao, 2023) to speed up training on large context window sizes. All of our
models are trained on a single machine equipped with 8 NVIDIA H100 (80GB) HGX GPUs.
The effective micro-batch size is set at 32 (4 gradient accumulation steps, with a single batch
per GPU). We utilize the AdamW optimizer with a learning rate of 2 × 10−5, a linear decay
scheduler, and 10 warmup steps. These parameters were chosen based on previous work
on fine-tuning for code generation tasks (Cassano et al., 2023a), it is likely that we could get
superior results by running a hyperparameter search. To facilitate reproducibility, we set
the random seed to 42 for all experiments.

Prior to training, we shuffled the dataset randomly and deduplicated2 it following the
method outlined by Li et al. (2023b). This process combines MinHash (Broder, 2000) and
Locality Sensitive Hashing (LSH) (Leskovec et al., 2014). We format the training data as a
prompt, with the ‘before’ code segment followed by the ‘instruction’ and the ‘after’ code
segment, and mask the loss calculation to only consider the ‘after’ code segment. All
models underwent training for 8 epochs, with a packed context window of 8192 tokens,
including padding for the remaining tokens. We select the model from the epoch with the
highest performance on a held-out validation set. The number of epochs chosen for each
EDITCODER is the following:

• EDITCODER-1.3b: 8
• EDITCODER-6.7b: 4
• EDITCODER-33b: 2

As shown by the number of epochs, we found that larger models overfit to the data more
quickly, suggesting that we could achieve better results with a larger dataset.

B.2 Effect of Loss Masking

In our training pipeline, we mask the loss calculation to only consider the ‘after’ code
segment. The intuition behind this is that we don’t need the model to learn how to reproduce
the ‘before’ and ‘instruction’ segments, as these are always going to be provided as input
to the model at inference time. The exact prompt format we use for training is shown in
Figure 4d.

We wish to verify that this loss masking is beneficial for our task. To assess our hypothesis,
we train two DeepSeekCoder-6.7b-Base models on EditPackFT3, one with loss masking and
one without, calculating the loss on all tokens. We then evaluate both models on CANITEDIT,
and report the pass@1 and ExcessCode metrics in Figure 6. The reported result with loss
masking is the same as the one reported in Table 4. We find that the model trained with loss
masking outperforms the model trained without it, and leads to a decrease in ExcessCode
and its standard error. Furthermore, we plot the training loss curves for both models in
Figure 7. We observe that the model trained with the loss masking technique is more stable
and converges faster than the model trained without it.

2Deduplication, achieved by concatenating the ‘before’ and ‘after’ code segments, helps mitigate
overfitting to specific training examples (Lee et al., 2022).

3We chose EditPackFT for this experiment as it is the smallest dataset we use for training, allowing
us to quickly compare the two methods.
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Masking pass@1 ExcessCode
Yes 41.6 0.26 ± 0.14
No 40.5 0.43 ± 0.20

Figure 6: Effect of loss masking on
the performance of DeepSeekCoder-6.7b-
Base on EditPackFT.
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Figure 7: Training loss curves for
DeepSeekCoder-6.7b-Base trained on
EditPackFT with and without loss masking.
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C Example CANITEDIT Benchmark Problems

We showcase four examples from the CANITEDIT benchmark, which we believe are repre-
sentative of the types of problems present in the dataset.

External Libraries in CANITEDIT Our benchmark includes 21 problems that import
external libraries, which are libraries outside of Python’s standard environment. We report
the list of external libraries used and their number of appearances in the dataset: NumPy
(13), Pandas (6), SciPy (3), scikit-learn (3), PyTorch (3), Z3 (2), autograd (2), Flask (1), vLLM
(1)

oop refactor Figure 8 details a task where the model refactors code using object-oriented
programming (OOP) principles. Initially, the code is a function for formatting messages
based on type. The refactoring involves creating TextMessage and ImageMessage as sub-
classes of an abstract Message class and implementing a MessageFactory for message
construction. This task provides an example of a perfective edit, focusing on reorganizing the
code into an OOP style without adding new features. The transformation is quite significant,
and the largest relative transformation in our dataset: from a single function to a multi-class
OOP program. The goal is to assess the model’s proficiency in converting functional code
into well-structured OOP designs based on comprehensive instructions and for the model
to restructure small programs into much larger ones. Our test suites verify both functional
correctness and the proper hierarchical class structure.

group theory Figure 9 features a task to modify a class from representing group C4
to group C8, including its operations like inverse and product. The problem highlights
domain-specific problems in CANITEDIT, this one being set in the context of cyclic groups.
Testing domain-specific edits is crucial, especially when comparing the capabilities of large
proprietary models like GPT-4 with smaller open models. It requires the model to transform
the C4 class (representing a 4-element cyclic group) into the C8 class (for an 8-element group),
requiring extensive edits across various code sections. This complexity presents a significant
test for other code editing approaches, such as fill-in-the-middle (Bavarian et al., 2022; Fried
et al., 2023), which may struggle with multiple edit locations (Yee & Guha, 2023). Key edits
involve altering the size and elements methods. The necessary understanding for these
modifications stems from group theory, which is not explicitly explained in the problem.
This setup tests the model’s capability to execute domain-specific edits where contextual
knowledge is implied rather than provided.

strategy Figure 10 presents an open-ended problem where the model devises a game
strategy to defeat the already implemented CornerStrategy in Tic Tac Toe. This task
represents an adaptive edit, focused on developing a new feature without altering existing
classes. The uniqueness in this problem lies in the lack of providing rules for the game, but
rather requiring the model to infer them through understanding of the code. Additionally, it
leaves the strategy design entirely to the model’s discretion. Our tests ensure that the Game
class remain intact and that the model’s strategy consistently outperforms CornerStrategy
in the game.

sudoku solver Figure 11 presents a sudoku solver problem leveraging the Z3 satisfiability
modulo (SMT) solver. The problem starts with an incomplete solver that lacks checks for
3x3 subgrids, both in its solving logic and board validity function. In sudoku, each 3x3 grid
must contain distinct numbers from 1 to 9. The task involves adding these checks to ensure
the solver can correctly solve a sudoku board. This problem assesses the model’s capability
to implement edits across different code sections. Although it uses Z3, in-depth knowledge
of the library or SMT isn’t required; the necessary features needed to solve the problem
can be inferred from the existing code, which already includes checks for row and column
uniqueness.
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1 def process_message(message , message_type):
2 if message_type == "text":
3 return f"Processed text message: {message}"
4 elif message_type == "image":
5 return f"Processed image message with description: {message}"
6 else:
7 return "Unknown message type"
8

(a) ‘before‘ code segment of the oop refactor problem (Figure 8).

Instruction Type

Abstract the code into an object -oriented version of
itself. To do that , create an abstract class
‘Message(ABC)‘, which can be initialized with a
‘content ‘ string. The class should have an abstract
method ‘process(self)‘, which should return a string.
Create two children classes ‘TextMessage ‘ and
‘ImageMessage ‘, which implement the ‘process ‘ method.
Finally , create a ‘MessageFactory ‘ that has a static
method ‘get_message(message_type , content) -> Message ‘;
static methods can be defined with the ‘@staticmethod ‘
decorator. The ‘get_message ‘ method should return
‘Message ‘ corresponding to the ‘message_type ‘ (either
‘text ‘ or ‘image ‘), and it should throw a ValueError if
the ‘message_type ‘ is not valid.

Descriptive

Make the code object -oriented. Specifically , create an
abstract class ‘Message ‘, and children classes
‘TextMessage ‘ and ‘ImageMessage ‘. The ‘Message ‘ class
should have a method ‘process(self)‘ that returns the
message which was given to the constructor. Also ,
create a ‘MessageFactory ‘ that has a static method
‘get_message(message_type , content) -> Message ‘; should
raise an exception if the message type is not supported.

Lazy

(b) Instructions for the oop refactor problem (Figure 8).

26



Preprint. Under review.

1 from abc import ABC , abstractmethod
2
3 class Message(ABC):
4 """
5 Abstract class for messages
6 """
7 def __init__(self , content):
8 self.content = content
9

10 @abstractmethod
11 def process(self):
12 pass
13
14 class TextMessage(Message):
15 """
16 Concrete class for TextMessage
17 """
18 def process(self):
19 return f"Processed text message: {self.content}"
20
21 class ImageMessage(Message):
22 """
23 Concrete class for ImageMessage
24 """
25 def process(self):
26 return f"Processed image message with description: {self.

content}"
27
28 class MessageFactory:
29 """
30 Factory class for creating message objects
31 """
32 @staticmethod
33 def get_message(message_type , content):
34 if message_type == "text":
35 return TextMessage(content)
36 elif message_type == "image":
37 return ImageMessage(content)
38 else:
39 raise ValueError("Unknown message type")
40

(c) Canonical solution for the oop refactor problem (Figure 8).

Figure 8: The oop refactor problem from CANITEDIT. This is a prime example of a
perfective type of edit, as asks the model to refactor code using OOP principles, without
adding any additional features.
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1 import torch
2 import numpy as np
3 import torch.nn as nn
4
5 class C4(nn.Module):
6 """ Represents the C4 class of group theory , where each
7 element represents a discrete rotation."""
8
9 def __init__(self):

10 super().__init__ ()
11 self.register_buffer(’identity ’, torch.Tensor ([0.]))
12
13 def size(self):
14 """ Outputs the size of this group."""
15 return 4
16
17 def elements(self):
18 """ Returns all the elements of this group """
19 return torch.tensor ([0., np.pi / 2, np.pi, 3 * np.pi / 2])
20
21 def product(self , h, g):
22 """ Compute the product of two elements g and h in the group C4

"""
23 return torch.remainder(h + g, 2 * np.pi)
24
25 def inverse(self , h):
26 """ Computes the inverse of the element h in the group C4"""
27 return torch.remainder(-h, 2 * np.pi)
28
29 def matrix_representation(self , h):
30 """ Returns the matrix representation of this element """
31 cos_t = torch.cos(h)
32 sin_t = torch.sin(h)
33 representation = torch.tensor ([
34 [cos_t , -sin_t],
35 [sin_t , cos_t]
36 ], device=self.identity.device)
37 return representation
38

(a) ‘before‘ code segment of the group theory problem (Figure 9)

Instruction Type

Edit the C4 class , which represents rotations of 0, 90,
180 and 270 degrees , to represent the class C8 , which
represents rotations of 0, 45, 90, 135, 180, 225, 270
and 315 degrees.

Descriptive

Edit the C4 class and its methods to represent the C8
group instead Lazy

(b) Instructions for the group theory problem (Figure 9).
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1 import torch
2 import numpy as np
3 import torch.nn as nn
4
5 class C8(nn.Module):
6 """ Represents the C8 class of group theory , where each
7 element represents a discrete rotation."""
8
9 def __init__(self):

10 super().__init__ ()
11 self.register_buffer(’identity ’, torch.Tensor ([0.]))
12
13 def size(self):
14 """ Outputs the size of this group."""
15 return 8
16
17 def elements(self):
18 """ Returns all the elements of this group """
19 delta = np.pi / 4
20 return torch.tensor ([0., delta , delta * 2, delta * 3,
21 delta * 4, delta * 5, delta * 6, delta *

7])
22
23 def product(self , h, g):
24 """ Compute the product of two elements g and h in the group C8

"""
25 return torch.remainder(h + g, 2 * np.pi)
26
27 def inverse(self , h):
28 """ Computes the inverse of the element h in the group C8"""
29 return torch.remainder(-h, 2 * np.pi)
30
31 def matrix_representation(self , h):
32 """ Returns the matrix representation of this element """
33 cos_t = torch.cos(h)
34 sin_t = torch.sin(h)
35 representation = torch.tensor ([
36 [cos_t , -sin_t],
37 [sin_t , cos_t]
38 ], device=self.identity.device)
39 return representation
40

(c) Canonical solution for the group theory problem (Figure 9).

Figure 9: The group theory problem from CANITEDIT. This exemplifies the subset of
domain-specific problems in our benchmark.

29



Preprint. Under review.

1 from abc import ABC
2 from abc import abstractmethod
3 from typing import List , Tuple
4
5 class Strategy(ABC):
6 @abstractmethod
7 def returnMove(self , board: List[List[bool ]]) -> Tuple[int , int]:
8 ’’’Returns a tuple(row , column) which indicates where to move
9 in a 3x3 grid.’’’

10 pass
11
12 class CornerStrategy(Strategy):
13 def returnMove(self , board: List[List[bool ]]) -> Tuple[int , int]:
14 if board [0][0] == None: return (0, 0)
15 elif board [0][2] == None: return (0, 2)
16 elif board [2][0] == None: return (2, 0)
17 elif board [2][2] == None: return (2, 2)
18 else: raise Exception
19
20 class Game:
21 def __init__(self , player1: Strategy , player2: Strategy):
22 self.playerOne = player1
23 self.playerTwo = player2
24 self.board = [[None for _ in range (3)] for _ in range (3)]
25
26 def player1Won(self):
27 playerTurn = True
28 while (not self.playerXWon(True) and not self.playerXWon(False

)
29 and not self.gameOver ()):
30 strat = self.playerOne if playerTurn else self.playerTwo
31 move = strat.returnMove(self.board)
32 self.board[move [0]][ move [1]] = playerTurn
33 playerTurn = not playerTurn
34 if self.gameOver (): return False
35 else: return self.playerXWon(True)
36
37 def gameOver(self):
38 for row in self.board:
39 for col in row:
40 if col == None: return False
41 return True
42
43 def playerXWon(self , x: bool):
44 for i in range (3):
45 if self.rowNX(i, x): return True
46 for i in range (3):
47 if self.colNX(i, x): return True
48 downDiag = self.board [0][0] == x and self.board [1][1] == x and

self.board [2][2] == x
49 upDiag = self.board [2][0] == x and self.board [1][1] == x and

self.board [0][2] == x
50 return downDiag or upDiag
51
52 def rowNX(self , n: int , x: bool):
53 for col in self.board[n]:
54 if col != x: return False
55 return True
56
57 def colNX(self , n: int , x: bool):
58 for row in self.board:
59 if row[n] != x: return False
60 return True
61

(a) ‘before‘ code segment of the strategy problem (Figure 10).
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Instruction Type

The following code describes a tic -tac -toe game which
takes in two strategies and determines who wins if they
play each other. The ‘Strategy ‘ class defines an
abstract method , ‘returnMove(board)‘, which returns a
tuple representing where this strategy will move , given
a board state. The ‘CornerStrategy ‘ class is a subclass
of ‘Strategy ‘ with a concrete implementation of
‘returnMove(board) ‘. The ‘Game ‘ class constructor takes
in two strategies. It has a method ‘player1Won ‘ which
determines if the first strategy provided will beat the
other if they both take turns alternating between
moves. There are two methods , ‘playerXWon ‘ and
‘gameOver ‘ which determine how a game is won and when
it is over. Create a class ‘GoodStrategy ‘ which extends
‘Strategy ‘ such that ‘Game(GoodStrategy (),
CornerStrategy ()).player1Won ()‘ returns ‘True ‘. This
can not be solved by modifying the ‘Game ‘, ‘Strategy ‘,
or ‘CornerStrategy ‘ classes in any way.

Descriptive

Create a strategy ‘GoodStrategy ‘, that beats
‘CornerStrategy ‘. Do not modify the ‘Game ‘ class. Lazy

(b) Instructions for the strategy problem (Figure 10).
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1 from abc import ABC
2 from abc import abstractmethod
3 from typing import List , Tuple
4
5 class Strategy(ABC):
6 @abstractmethod
7 def returnMove(self , board: List[List[bool ]]) -> Tuple[int , int]:
8 ’’’Returns a tuple(row , column) which indicates where to move
9 in a 3x3 grid.’’’

10 pass
11
12 class CornerStrategy(Strategy):
13 def returnMove(self , board: List[List[bool ]]) -> Tuple[int , int]:
14 if board [0][0] == None: return (0, 0)
15 elif board [0][2] == None: return (0, 2)
16 elif board [2][0] == None: return (2, 0)
17 elif board [2][2] == None: return (2, 2)
18 else: raise Exception
19
20 class GoodStrategy(Strategy):
21 def __init__(self) -> None:
22 super().__init__ ()
23 self.turn = 0
24 def returnMove(self , board: List[List[bool ]]) -> Tuple[int , int]:
25 self.turn += 1
26 if self.turn == 1: return (0, 1)
27 elif self.turn == 2: return (1, 1)
28 elif self.turn == 3: return (2, 1)
29 raise Exception
30
31 class Game:
32 def __init__(self , player1: Strategy , player2: Strategy):
33 self.playerOne = player1
34 self.playerTwo = player2
35 self.board = [[None for _ in range (3)] for _ in range (3)]
36 def player1Won(self):
37 ...
38 def gameOver(self):
39 ...
40 def playerXWon(self , x: bool):
41 ...
42 def rowNX(self , n: int , x: bool):
43 ...
44 def colNX(self , n: int , x: bool):
45 ...
46

(c) Canonical solution for the strategy problem (Figure 10).

Figure 10: The strategy problem from CANITEDIT. This problem is a prime example of a
adaptive type of edit, and is characteristic in the open-endedness of the instructions, both
descriptive and lazy.
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1 from typing import List , Optional
2 from z3 import ArithRef , Int , Solver , Distinct , And , sat , IntVal
3
4 def make_9x9_z3_board(board_text: str , solver: Solver) -> List[List[ArithRef ]]:
5 """
6 Creates a board of z3 variables from a string representation of a board.
7 For unknown cells , make the value be 0, and for known cells , make the value
8 be a number from 1-9.
9 """

10 board = []
11 for line_counter , line in enumerate(board_text.splitlines ()):
12 row = []
13 for char_counter , character in enumerate(line.strip ()):
14 if character.isdigit ():
15 num = int(character)
16 # 0 is unknown
17 cell = Int(f"cell_{line_counter}_{char_counter}")
18 if num == 0:
19 solver.add(And(cell >= 1, cell <= 9))
20 row.append(cell)
21 elif 0 < num < 10:
22 solver.add(cell == IntVal(num))
23 row.append(cell)
24 if len(row) != 9:
25 raise ValueError(
26 f"Invalid column count of board , must be 9, got {len(row)}")
27 board.append(row)
28
29 if len(board) != 9:
30 raise ValueError(
31 f"Invalid row count of board , must be 9, got {len(board)}")
32
33 return board
34
35 def assert_uniq(solver: Solver , z3_board: List[List[ArithRef ]]):
36 # Assert rows unique
37 for row in z3_board:
38 solver.add(Distinct(row))
39
40 # Assert columns unique
41 for col in zip(* z3_board):
42 solver.add(Distinct(col))
43
44 def print_board(board: List[List[int]]):
45 for row in board:
46 print(row)
47
48 def check_valid(board: List[List[int]]) -> bool:
49 for row in board:
50 if len(set(row)) != 9:
51 return False
52
53 for col in zip(*board):
54 if len(set(col)) != 9:
55 return False
56
57 return True
58
59 def solve(board_text: str) -> Optional[List[List[int ]]]:
60 solver = Solver ()
61 z3_board = make_9x9_z3_board(board_text , solver)
62 board: List[List[int]] = [[] for _ in range (9)]
63 assert_uniq(solver , z3_board)
64 if solver.check () == sat:
65 model = solver.model()
66 for i, row in enumerate(z3_board):
67 row = [model.evaluate(cell).as_long () # type: ignore
68 for cell in row]
69 board[i] = row
70 return board
71 else: return None
72

(a) ‘before‘ code segment of the sudoku solver problem (Figure 11).
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Instruction Type

This version of the sudoku solver and checker does not
reflect the original game of sudoku; the original game
also checks for the uniqueness of 3x3 subgrids in
addition to the rows and columns. Update the
‘assert_uniq ‘ function to add new constraints for all
nine 3x3 subgrids , and update the ‘check_valid ‘
function to make sure that input grids have unique 3x3
subgrids.

Descriptive

Make both the sudoku solver and verifier support the
nine 3x3 subgrids that are in the original sudoku game. Lazy

(b) Instructions for the sudoku solver problem (Figure 11).
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1 from typing import List , Optional
2 from z3 import ArithRef , Int , Solver , Distinct , And , sat , IntVal
3
4 def make_9x9_z3_board(board_text: str , solver: Solver) -> List[List[ArithRef ]]:
5 ...
6
7 def assert_uniq(solver: Solver , z3_board: List[List[ArithRef ]]):
8 # Assert rows unique
9 for row in z3_board:

10 solver.add(Distinct(row))
11
12 # Assert columns unique
13 for col in zip(* z3_board):
14 solver.add(Distinct(col))
15
16 # Assert 3x3 squares unique
17 for i in range(0, 9, 3):
18 for j in range(0, 9, 3):
19 square = [z3_board[x][y]
20 for x in range(i, i+3) for y in range(j, j+3)]
21 solver.add(Distinct(square))
22
23 def print_board(board: List[List[int]]):
24 for row in board:
25 print(row)
26
27 def check_valid(board: List[List[int]]) -> bool:
28 for row in board:
29 if len(set(row)) != 9: return False
30
31 for col in zip(*board):
32 if len(set(col)) != 9: return False
33
34 for i in range(0, 9, 3):
35 for j in range(0, 9, 3):
36 square = [board[x][y]
37 for x in range(i, i+3) for y in range(j, j+3)]
38 if len(set(square)) != 9: return False
39 return True
40
41 def solve(board_text: str) -> Optional[List[List[int ]]]:
42 solver = Solver ()
43 z3_board = make_9x9_z3_board(board_text , solver)
44 board: List[List[int]] = [[] for _ in range (9)]
45 assert_uniq(solver , z3_board)
46 if solver.check () == sat:
47 model = solver.model()
48 for i, row in enumerate(z3_board):
49 row = [model.evaluate(cell).as_long () # type: ignore
50 for cell in row]
51 board[i] = row
52 return board
53 else: return None

(c) Canonical solution for the sudoku solver problem (Figure 11).

Figure 11: The sudoku solver problem from CANITEDIT. This problem uses the Z3 theorem
proving library, and is an example of a corrective type of edit, as it requires the model to
correct an existing solver to include checks for 3x3 subgrids.
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D Example Model Completions

This section analyzes various completions from the models we evaluated, displaying both
correct and incorrect examples to highlight their strengths and weaknesses.

D.1 Excess Code Generation

Figure 12 provides an instance of EDITCODER-1.3b generating excess code. This case
underscores the importance of the ExcessCode metric ( §5.1), which penalizes models for
generating unneeded code. Here, the model, while correctly altering the flatten method in
Tensor, unnecessarily adds an unflatten method, resulting in an ExcessCode score of 66.67.
To accurately measure ExcessCode, completions must pass the test suite for proper line
coverage evaluation. Figure 13 shows another excess code example where the completion is
failing the test suite, preventing the evaluation of the ExcessCode metric.

D.2 Model-Specific Completion Capabilities

Different models exhibit unique competencies in completing different tasks. Figure 14
highlights a solution by EDITCODER-33b for a complex problem involving the modification
of a maze solver class to use the A* algorithm with Manhattan distance heuristic instead of
the existing Uniform Cost Search (UCS) algorithm. A common error observed, particularly
in GPT-4, is the incorrect persistence of heuristic values in the A* algorithm, where the
heuristic value persists across multiple iterations of the algorithm inside the frontier queue.
In contrast, Figure 15 presents a problem solved exclusively by OpenAI models, requiring
domain-specific knowledge on monte carlo approximation for kl-divergence, a skill less
common in smaller open-source models. This illustrates the balance between using OpenAI
models for domain-specific issues and open-source models for more general code editing
tasks.
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1 class Tensor:
2 def __init__(self , matrix):
3 self.matrix = matrix
4
5 def m(self):
6 return len(self.matrix)
7
8 def n(self):
9 return len(self.matrix [0])

10
11 def relu(self):
12 for i in range(self.m()):
13 for j in range(self.n()):
14 self.matrix[i][j] = max(0, self.matrix[i][j])
15
16 def flatten(self):
17 sofar = []
18 for i in range(self.n()):
19 for j in range(self.m()):
20 sofar.append(self.matrix[j][i])
21 return sofar

(a) ‘before‘ code segment of Figure 12.

Edit Instruction

Change ‘flatten ‘ to flatten lists left to right , top down.

(b) Instruction for Figure 12.

37



Preprint. Under review.

1 class Tensor:
2 def __init__(self , matrix):
3 self.matrix = matrix
4
5 def m(self):
6 return len(self.matrix)
7
8 def n(self):
9 return len(self.matrix [0])

10
11 def relu(self):
12 for i in range(self.m()):
13 for j in range(self.n()):
14 self.matrix[i][j] = max(0, self.matrix[i][j])
15
16 def flatten(self):
17 sofar = []
18 for i in range(self.m()):
19 for j in range(self.n()):
20 sofar.append(self.matrix[i][j])
21 return sofar
22
23 def unflatten(self , flat):
24 self.matrix = []
25 for i in range(self.n()):
26 self.matrix.append ([])
27 for j in range(self.m()):
28 self.matrix[i]. append(flat[i*self.n() + j])

(c) Model-generated completion for Figure 12.

Figure 12: An example of EDITCODER-1.3b generating excess code. Tasked with modify-
ing the flatten method in Tensor, the model correctly alters flatten but also adds an
unwanted unflatten method. This instance scores 66.67 on the ExcessCode metric.
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1 import math
2 from collections import Counter
3 from typing import List , Dict
4
5 class BM25:
6 def __init__(
7 self ,
8 corpus: List[List[str]],
9 k1: float = 1.5,

10 b: float = 0.75
11 ) -> None:
12 self.corpus_size = len(corpus)
13 self.doc_freqs = []
14 self.corpus = corpus
15 self.df = {}
16 self.idf = {}
17 self.doc_len = []
18 self.avgdl = -1
19 self._initialize ()
20 self.k1 = k1
21 self.b = b
22
23 def _initialize(self) -> None:
24 for document in self.corpus:
25 frequencies = {}
26 self.doc_len.append(len(document))
27 for word in document:
28 frequencies[word] = frequencies.get(word , 0) + 1
29 self.doc_freqs.append(frequencies)
30 for document in self.doc_freqs:
31 for word , freq in document.items():
32 self.df[word] = self.df.get(word , 0) + 1
33 for word , freq in self.df.items():
34 self.idf[word] = math.log(1 + (self.corpus_size
35 - freq + 0.5) / (freq + 0.5))
36 self.avgdl = sum(self.doc_len) / self.corpus_size
37
38 def calculate_bm25(
39 self ,
40 document_index: int ,
41 query: List[str]
42 ) -> float:
43 score = 0.0
44 document = self.corpus[document_index]
45 doc_len = len(document)
46 for term in query:
47 if term in self.doc_freqs[document_index ]:
48 term_freq = self.doc_freqs[document_index ][term]
49 score += self.idf[term] * term_freq
50 * (self.k1 + 1)
51 / (term_freq + self.k1 * (1 - self.b
52 + self.b * doc_len / self.avgdl))
53 return score
54
55 def rank(self , query: List[str]) -> List[float ]:
56 scores = [self.calculate_bm25(idx , query)
57 for idx in range(self.corpus_size)]
58 return scores

(a) ‘before‘ code segment of Figure 13.

Edit Instruction

Optimize the bm25 algorithm by avoiding frequency calculations.

(b) Instruction for Figure 13
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1 import math
2 from typing import List , Dict
3
4 class BM25:
5 def __init__(
6 self ,
7 corpus: List[List[str]],
8 k1: float = 1.5,
9 b: float = 0.75

10 ) -> None:
11 self.corpus = corpus
12 self.corpus_size = len(corpus)
13 self.avgdl = sum(len(doc) for doc in corpus)
14 / self.corpus_size
15 self.k1 = k1
16 self.b = b
17
18 def calculate_bm25(
19 self ,
20 document_index: int ,
21 query: List[str]
22 ) -> float:
23 doc_freqs: List[Dict[str , int]] = []
24 df: Dict[str , int] = {}
25 idf = {}
26 for document in self.corpus:
27 frequencies: Dict[str , int] = {}
28 for word in document:
29 frequencies[word] = frequencies.get(word , 0) + 1
30 if word not in df:
31 df[word] = 0
32 df[word] += 1
33 doc_freqs.append(frequencies)
34 for word , freq in df.items():
35 idf[word] = math.log(1 + (self.corpus_size
36 - freq + 0.5) / (freq + 0.5))
37 score = 0.0
38 document = self.corpus[document_index]
39 doc_len = len(document)
40 for term in query:
41 if term in doc_freqs[document_index ]:
42 term_freq = doc_freqs[document_index ][term]
43 score += idf[term] * term_freq
44 * (self.k1 + 1)
45 / (term_freq + self.k1 * (1 - self.b
46 + self.b * doc_len / self.avgdl))
47 return score
48
49 def rank(self , query: List[str]) -> List[float]:
50 scores = [self.calculate_bm25(idx , query)
51 for idx in range(self.corpus_size)]
52 return scores

(c) Model-generated completion for Figure 13.

Figure 13: An example of excess added code to the solution, which is incorrect - produced by
the EDITCODER-33b. The model adds a ”doc len” instance attribute which is not necessary
for the solution and is not implemented in the proposed solution shown above. In addition,
it is not necessary to store the document lengths as it is a quick lookup to get the length of a
list in Python.
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1 from typing import List , Literal , Tuple

2 from queue import PriorityQueue

3
4 Move = Literal["up", "down", "left", "right"]

5 # 0 = up , 1 = down , 2 = left , 3 = right

6 MoveIndex = Literal[0, 1, 2, 3]

7 # 0 = empty , 1 = wall , 2 = start , 3 = end

8 Cell = Literal[0, 1, 2, 3]

9
10 class Maze:

11 def __init__(self , maze: List[List[Cell ]]):

12 self.maze = maze

13 self.rows = len(maze)

14 self.cols = len(maze [0])

15 self.start = self.find_start ()

16 self.end = self.find_end ()

17
18 def find_start(self) -> Tuple[int , int]:

19 for row in range(self.rows):

20 for col in range(self.cols):

21 if self.maze[row][col] == 2:

22 return row , col

23 raise ValueError("No start found")

24
25 def find_end(self) -> Tuple[int , int]:

26 for row in range(self.rows):

27 for col in range(self.cols):

28 if self.maze[row][col] == 3:

29 return row , col

30 raise ValueError("No end found")

31
32 def get_neighbors(

33 self , row: int , col: int

34 ) -> List[Tuple[int , int ]]:

35 neighbors = []

36 if row > 0 and self.maze[row - 1][col] != 1:

37 neighbors.append ((row - 1, col))

38 if row < self.rows - 1 and self.maze[row + 1][col] != 1:

39 neighbors.append ((row + 1, col))

40 if col > 0 and self.maze[row][col - 1] != 1:

41 neighbors.append ((row , col - 1))

42 if col < self.cols - 1 and self.maze[row][col + 1] != 1:

43 neighbors.append ((row , col + 1))

44 return neighbors

45
46 def solve(self) -> Tuple[int , List[Tuple[int , int ]]]:

47 """ Uses UCS to find a path from start to end , returning

48 the number of nodes expanded and the path if one

49 exists. The cost of each move is 1."""

50 visited = set()

51 frontier = PriorityQueue ()

52 frontier.put((0, self.start , []))

53 expanded = 0

54 while not frontier.empty():

55 cost , current , path = frontier.get()

56 if current in visited:

57 continue

58 visited.add(current)

59 new_path = path + [current]

60 if current == self.end:

61 return expanded , new_path

62 for neighbor in self.get_neighbors (* current):

63 if neighbor not in visited:

64 new_cost = cost + 1

65 frontier.put(

66 (new_cost , neighbor , new_path))

67 expanded += 1

68 return expanded , []

(a) ‘before‘ code segment of Figure 14.

Edit Instruction

Change the ‘solve ‘ function to use A* with manhattan distance
instead of using UCS.

(b) Instruction for Figure 14.
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1 from typing import List , Literal , Tuple
2 from queue import PriorityQueue
3
4 Move = Literal["up", "down", "left", "right"]
5 # 0 = up , 1 = down , 2 = left , 3 = right
6 MoveIndex = Literal[0, 1, 2, 3]
7 # 0 = empty , 1 = wall , 2 = start , 3 = end
8 Cell = Literal[0, 1, 2, 3]
9

10 def manhattan_distance(
11 a: Tuple[int , int], b: Tuple[int , int]) -> int:
12 return abs(a[0] - b[0]) + abs(a[1] - b[1])
13
14 class Maze:
15 def __init__(self , maze: List[List[Cell ]]):
16 self.maze = maze
17 self.rows = len(maze)
18 self.cols = len(maze [0])
19 self.start = self.find_start ()
20 self.end = self.find_end ()
21
22 def find_start(self) -> Tuple[int , int]:
23 for row in range(self.rows):
24 for col in range(self.cols):
25 if self.maze[row][col] == 2:
26 return row , col
27 raise ValueError("No start found")
28
29 def find_end(self) -> Tuple[int , int]:
30 for row in range(self.rows):
31 for col in range(self.cols):
32 if self.maze[row][col] == 3:
33 return row , col
34 raise ValueError("No end found")
35
36 def get_neighbors(
37 self , row: int , col: int
38 ) -> List[Tuple[int , int ]]:
39 neighbors = []
40 if row > 0 and self.maze[row - 1][col] != 1:
41 neighbors.append ((row - 1, col))
42 if row < self.rows - 1 and self.maze[row + 1][ col] != 1:
43 neighbors.append ((row + 1, col))
44 if col > 0 and self.maze[row][col - 1] != 1:
45 neighbors.append ((row , col - 1))
46 if col < self.cols - 1 and self.maze[row][col + 1] != 1:
47 neighbors.append ((row , col + 1))
48 return neighbors
49
50 def solve(self) -> Tuple[int , List[Tuple[int , int ]]]:
51 """ Uses A* with the manhattan distance as a heuristic
52 to find a path from start to end , returning the
53 number of nodes expanded and the path if one exists."""
54 visited = set()
55 # Each entry in the PQ is a tuple of
56 # (f(n), g(n), coord , path)
57 frontier = PriorityQueue ()
58 frontier.put((0, 0, self.start , []))
59 expanded = 0
60 while not frontier.empty():
61 _, cost , current , path = frontier.get()
62 if current in visited: continue
63 visited.add(current)
64 new_path = path + [current]
65 if current == self.end:
66 return expanded , new_path
67 for neighbor in self.get_neighbors (* current):
68 if neighbor not in visited:
69 g = cost + 1
70 h = manhattan_distance(neighbor , self.end)
71 f = g + h
72 frontier.put((f, g, neighbor , new_path))
73 expanded += 1
74 return expanded , []

(c) Model-generated completion for Figure 14.

Figure 14: A correct code edit solution generated by EDITCODER-33b. The model correctly
converts the UCS implementation to A* and adds a new manhattan distance function as a
standalone utility. Out of the models we evaluated, only EDITCODER-33b was able to solve
this problem.
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1 import torch
2
3 def kl_div(
4 q: torch.distributions.Distribution ,
5 p: torch.distributions.Distribution
6 ) -> torch.Tensor:
7 return torch.distributions.kl_divergence(q, p).mean()

(a) ‘before‘ code segment of Figure 15.

Edit Instruction

Change kl_div to compute a monte carlo approximation of the kl
divergence given num_samples as a parameter , which by default is
set to 100000.

(b) Instruction for Figure 15.

1 import torch
2
3 def kl_div(
4 q: torch.distributions.Distribution ,
5 p: torch.distributions.Distribution ,
6 num_samples: int = 100000
7 ) -> torch.Tensor:
8 samples = q.sample (( num_samples ,))
9 return (q.log_prob(samples) - p.log_prob(samples)).mean()

(c) Model-generated completion for Figure 15.

Figure 15: A correct code edit solution generated by GPT-4. Interestingly, GPT-4 can solve
this problem while all fine-tuned models are unable to solve it. This problem requires
knowledge of a sampling technique for approximating the KL divergence between two
distributions.
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E Using LLMs in Code Editing Tasks

In this section, we provide a brief overview of the use of LLMs in code editing tasks. We
showcase two scenarios: (1) humans interacting with chat models to edit code, and (2)
models automatically generating edits for code. For the former, we analyze a large dataset
of LLM chatbot interactions, ”lmsys/lmsys-chat-1m” which can be found on HuggingFace’s
hub, and for the latter, we analyze a sample reflection generated by GPT-4 using the
Reflexion algorithm (Shinn et al., 2023).

E.1 Human-Instructed Code Editing

1 def preprocess(original_document):
2 rows = build_rows(original_document)
3 packed_row_boxes = list(rows.values ())
4
5 if len(packed_row_boxes) == 1:
6 return None , None
7
8 paragraph_classes = get_paragraphs(packed_row_boxes ,
9 cluster_threshold=

CLUSTER_THRESHOLD ,
10 distance_threshold=

DISTANCE_THRESHOLD)
11 paragraph_boxes = make_paragraph_from_prediction(packed_row_boxes ,

paragraph_classes)
12 # rest of code omitted for brevity
13

(a) Instruction: Can you refactor this python code?

1 (function () {
2 var x = 10;
3 var y = 20;
4 var z = 30;
5 var a = function(b, c) {
6 return b + c;
7 };
8 var b = function(d, e) {
9 return d - e;

10 };
11 var c = function(f, g) {
12 return f * g;
13 };
14 console.log(a(x, y));
15 console.log(b(z, x));
16 console.log(c(x, y));
17 })();

(b) Instruction: cool, now please refactor the snippet to have exactly the same logic and be as readable
as possible.

Figure 16: Two example human editing requests taken from the ”lmsys/lmsys-chat-1m”
dataset which contains 1-million in-the-wild conversations from 25 conversational LLMs

We analyze a large dataset of human interactions with 25 different conversational LLMs,
users to interact with a highly capable chatbot. The dataset, ”lmsys/lmsys-chat-1m”,
contains 1-million real conversations from 25 conversational LLMs of varying sizes and
capabilities. We analyze the dataset to understand how humans interact with LLMs to edit
code. We find that 4188 of the 1-million conversations contain a code-related request, and
that 831 of those conversations contain a code editing request. We found this number by
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searching for markdown-formatted code blocks in the conversations, therefore the actual
number of code-related requests is likely higher. We analyzed a subset of code editing
requests to understand the types of requests humans make to LLMs. We find that almost
all of the requests are of the ”lazy” kind that we include in CANITEDIT. We provide two
examples of human editing requests in Figure 16. The first example is a request to refactor
a Python code snippet, and the second example is a request to refactor a JavaScript code
snippet. As shown, these requests are very informal and direct, and do not provide any
information about the desired solution. Other instructions we found that we think exemplify
the type of instructions humans give to LLMs include:

• Please change use scrappy instead request.
• change this code to python
• Can you change above code to not use histogram but use two for loops to create the his-

togram?
• Very cool. Now change it so that it compresses each file using lz4 and saves it to a file with

the same name and extension, + ”.lz4”

E.2 Model-Generated Instructions for Editing Code

1 def putMarbles(weights: List[int], k: int) -> int:
2 """
3 You have k bags. You are given a 0-indexed integer array weights where weights[i] is

the
4 weight of the ith marble. You are also given the integer k.
5 Divide the marbles into the k bags according to the following rules:
6 No bag is empty.
7 If the ith marble and jth marble are in a bag , then all marbles with an index between

the
8 ith and jth indices should also be in that same bag.
9 If a bag consists of all the marbles with an index from i to j inclusively , then the

cost
10 of the bag is weights[i] + weights[j].
11 The score after distributing the marbles is the sum of the costs of all the k bags.
12 Return the difference between the maximum and minimum scores among marble

distributions.
13 """
14 # code omitted for brevity
15
16 # PASSING TESTS
17
18 # none of the tests are passing
19
20 # FAILING TESTS
21
22 assert putMarbles ([1, 3, 5, 1], 2) == 4 # actual output: 6
23 assert putMarbles ([1, 3], 2) == 0 # actual output: inf

(a) Instruction: The implementation failed 2 out of the test cases provided. The issue lies in the
calculation of the difference between the maximum and minimum scores among marble distributions.
The function returns the difference between the score for k bags and the score for 1 bag, which is not
the correct calculation for the problem statement. To fix this issue, we need to find the maximum and
minimum scores among all possible distributions and then return the difference between them. This
can be achieved by iterating through all possible distributions and keeping track of the maximum and
minimum scores, and then returning their difference.

Figure 17: An example of a model-generated instruction for code editing. The instruction is
generated by GPT-4 using the Reflexion algorithm (Shinn et al., 2023), by making the model
reflect on unit test failures. The problem is from the LeetCode Hard problem set.

This section delves into an example of code editing guided by instructions generated by
GPT-4 using the Reflexion algorithm. Reflexion is a versatile algorithm developed for
enhancing model output through environmental feedback, as detailed in Shinn et al. (2023).
While its application extends across various tasks, including reasoning and decision-making,
its utility in program synthesis is particularly notable. The process starts with generating
unit tests for a program given its natural language description, followed by the creation and
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evaluation of a candidate program against these tests. If the program fails, Reflexion induces
the model to produce a reflection, identifying potential errors and suggesting corrections.
This reflection serves as an instruction for modifying the failing program, which are both
provided to the model to edit the failing program into a new candidate, iterating until it
passes all tests or a predetermined stop condition is reached.

We provide an example of a model-generated instruction for code editing in Figure 17,
where the model was tasked with addressing a problem from the LeetCode Hard problem
set. The instruction, precise and detailed, pinpoints the specific issue in the function’s logic
and suggests a clear approach for rectification. It emphasizes iterating through marble
distributions to calculate the maximum and minimum scores, a method not implemented
in the original code. This example showcases how Reflexion can guide models to not only
identify errors in logic but also propose viable solutions. This kind of guided instruction is
useful for enhancing the accuracy and efficiency of models in complex code editing tasks;
however, it is important to note that the instruction is not a complete solution, and that these
models may produce misleading or incorrect instructions. The instruction is quite verbose
compared to the human examples shown in Figure 16, and it is unclear how humans would
interact with such an instruction, as this amount of detail is not necessary for the task at
hand.
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